The research aims to assess the claystone exposed in the Nfayil Formation (Middle Miocene) for Portland cement (P.C.) manufacturing based on mineralogy and geochemistry. The importance of the study is to avoid the miming of the agricultural soils that are mining now for the cement industry. Claystones of Nfayil Formation and the limestone of the Euphrates Formation were used to design the raw mixture as clay to limestone (1:3). The chemical composition (%) of the designed mixture was calculated using the Alligation Alternative Method (A.A.M.) as CaO (65.52), MgO (1.05), SiO2 (21.65), Al2O3 (7.43), Fe2O3 (2.62), Na2O3+K2O (1.52) and SO3 (0.26), which are suitable for P.C. The lime saturation factor (LSF = 92.8), silica saturation factor (SSF = 0.87), alumina ratio (AR = 2.8), silica ratio (SR = 2.16), and calcium to silica (CS = 3.04) of the planned mixture are all within the permissible range. A clinker was successfully manufactured as composed mainly of belite, alite, aluminate, and ferrite.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More