In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of SiO2–GO nano-hybrids. Photocatalytic investigations revealed that the composite materials exhibit high activity for dye adsorption and decomposition. Si-GO10 thin film did not undergo degradation after 120 min; however, for Si-GO30 nanopowder, the adsorption peak intensity was reduced to 665 nm, indicating a decrease in the dye concentration in the solution. Fourier transform infrared scan (FTIR) analysis demonstrated that carboxylic functional groups are decreased by increasing silica particles. Photoluminescence (PL) spectrum in Si-GO10 thin film showed a sharp emission peak at about 665 nm. This spectrum completely disappeared in Si-GO30 nanopowders. Results of the antibacterial properties emphasized that Si-GO30 nanoparticle would prevent Escherichia coli growth after 20 h. The presented methodology allows for the synthesis of GO supported silicon dioxide nanoparticles for promising applications in photocatalytic and antibacterial fields.
A series of new 4-(((4-(5-(Aryl)-1,3,4-oxadiazol-2-yl)benzyl)oxy)methyl)-2,6-dimethoxy phenol (6a-i) were synthesized from cyclization of 4-(((4-hydroxy-3,5-dimethoxy benzyl)oxy)methyl)benzohydrazide with substituted carboxylic acid in the presences of phosphorusoxy chloride.The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to screen their antioxidant properties. Compounds 6i and 6h exhibited significant antioxidant ability in both assay. Furthermore, type of substituent and their position of the aryl attached 1,3,4-oxadiazole ring at position five are play an important roles in enhancing or declining the antio
... Show MoreA series of 4-(methylsulfonyl)aniline derivatives were synthesized in order to obtain new compounds as a potential anti-inflammatory agents with expected selectivity against COX-2 enzyme. In vivo acute anti-inflammatory activity of the final compounds 11–14 was evaluated in rat using an egg-white induced edema model of inflammation in a dose equivalent to 3 mg/Kg of diclofenac sodium. All tested compounds produced significant reduction of paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the activity of compounds 11 and 14 was significantly higher than that of diclofenac sodium (at 3 mg/Kg) in the 120–300 minute time interval, while compound 12 expressed a comparable effect to that of di
... Show MoreThe ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreThe reaction of L-ascorbic acid with the chloroacetic acid in presence of potassium hydroxide has been investigated. The new product L (2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid) was isolated and characterized by elemental analysis(C.H), 1H, 13C-NMR. Mass spectrum and Fourier transform infrared (FT-IR). The reaction of the ligand (L) (where L = H4L), M+2 = (Co, Ni, Cu, Cd, Pb, Hg, Ca, Mg) has been investigated and was isolated and characterized by FT-IR, UV- visible, conductivity, Atomic absorption and molar ratio (Cd, Co) complexes. Spectroscopic evidence showed that the binding of the M(II) ions are throughy the O-1 Lacton, O-2-OCH2COOH and O-6-O
... Show MoreA new ligand N-((4-(phenylamino) phenyl) carbamothioyl) acetamide (PCA) was synthesized by reaction of (4-amino di phenyl amine) with (acetyl isothiocyante) by using acetone as a solvent. The prepared ligand(PCA) has been characterization by elemental analysis (CHNS), infrared(FT-IR),electronic spectral (UV-Vis)&1H,13C- NMR spectra. Some Divalent Metal ion complexes of ligand (PCA) were prepared and spectroscopic studies by infrared(FT-IR), electronic spectral (UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula ofFall prepared complexes were [M (PCA)2 Cl2] (M+2 = Mn, Co, Ni, CU, Zn, Cd &Hg),the proposed geometrical structure for all complexes wereeoctahedral.
The electrochemical polymerization of the monomer sulfanilamide (SAM) in an aqueous solution at room temperature produces polysulfanilamide (PSAM). The Fourier Transform Infrared spectroscopy (FTIR) was used to investigate the properties of the prepared polymer layer that generated on the stainless steel (St.S) surface (working electrode) and Atomic Force Microscope (AFM) was used to characterize the morphology, topology, and detailed surface structure of polymer layer that generated on the surface. The corrosion behavior of uncoated and coated St.S were evaluated by using the electrochemical polarization method in a 0.2 M HCl solution and a temperature range of 293–323 K, the anticorrosion action of the polymer coating on stainless steel
... Show MoreMixed ligand of Co and Ni (II) complexes were prepared from [5-(p-nitrophenyl)-4/-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide](TRZ.DTC) as primary ligand and 2,2'-bipyridyl (bipy) as a co-ligand with metal salts. These complexes were analytically and spectroscopically characterized in solid state by elemental analyses, flame atomic absorption, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis and FTIR spectroscopy. Infrared, ultra violet spectra reveal a bidentate coordination of the two ligands with metal ions 1:1:1 mole ratio. Room temperature magnetic moments and solid reflectance spectra data indicate paramagnetic complexes with five-coordinate square pyramidal geometry for nickel (II) comple
... Show More