In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of SiO2–GO nano-hybrids. Photocatalytic investigations revealed that the composite materials exhibit high activity for dye adsorption and decomposition. Si-GO10 thin film did not undergo degradation after 120 min; however, for Si-GO30 nanopowder, the adsorption peak intensity was reduced to 665 nm, indicating a decrease in the dye concentration in the solution. Fourier transform infrared scan (FTIR) analysis demonstrated that carboxylic functional groups are decreased by increasing silica particles. Photoluminescence (PL) spectrum in Si-GO10 thin film showed a sharp emission peak at about 665 nm. This spectrum completely disappeared in Si-GO30 nanopowders. Results of the antibacterial properties emphasized that Si-GO30 nanoparticle would prevent Escherichia coli growth after 20 h. The presented methodology allows for the synthesis of GO supported silicon dioxide nanoparticles for promising applications in photocatalytic and antibacterial fields.
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreBismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray p
... Show MoreA novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreThe present study envisaged utilizing 4-aminoantipyrine as key intermediate for the synthesis of some new derivatives bearing anti-bacterial and anti-cancer activities moieties viz., antipyrine diazenyl benzaldehydes 2(ad) which were obtained by coupling of diazotized 4-aminoantipyrine (1) with substituted benzaldehydes at 0◦C (iced) temperature. The other antipyrine derivatives where containing bis heterocycles like bis thiazolidinone-antipyrine (4), bis imidazolidinone -antipyrine (5) and bis azetidinone -antipyrine (6).These compounds were prepared through the reaction between 4- aminoantipyrine and terephthaldicarboxaldehyde to get (3) which were reacted with mercaptoacetic acid , glycine or chloroacetyl chloride separately to get com
... Show More