In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of SiO2–GO nano-hybrids. Photocatalytic investigations revealed that the composite materials exhibit high activity for dye adsorption and decomposition. Si-GO10 thin film did not undergo degradation after 120 min; however, for Si-GO30 nanopowder, the adsorption peak intensity was reduced to 665 nm, indicating a decrease in the dye concentration in the solution. Fourier transform infrared scan (FTIR) analysis demonstrated that carboxylic functional groups are decreased by increasing silica particles. Photoluminescence (PL) spectrum in Si-GO10 thin film showed a sharp emission peak at about 665 nm. This spectrum completely disappeared in Si-GO30 nanopowders. Results of the antibacterial properties emphasized that Si-GO30 nanoparticle would prevent Escherichia coli growth after 20 h. The presented methodology allows for the synthesis of GO supported silicon dioxide nanoparticles for promising applications in photocatalytic and antibacterial fields.
In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreNanoparticles are a special group of materials with unique features and extensive applications in diverse fields. The use of nanoparticles of some metals is a viable solution to stop infectious diseases due to the antimicrobial properties of these nanoparticles. The present work demonstrates the effect of silver nanoparticles (AgNPs) on the antibacterial activity of four different antibiotics (amoxicillin, ceftriaxone, chloramphenicol, and penicillin) against eleven Gram-positive and Gram-negative isolates. Disk diffusion method was used to determine the antibacterial activity of various classes of antibiotics in the absence and presence of sub-inhibitory silver nanoparticles of concentration (80 microgram/ml). A synergistic effect was o
... Show MoreThe aim of this study is to evaluating the antibacterial activity of Laurus nobilis leaves extract in hospital environment isolates. Maceration and Soxhlet apparatus were used to prepare aqueous and methanolic extracts. The total phenolic content and high-performance liquid chromatography (HPLC) were conducted to determine the active compounds in the extracts. The results showed that the methanolic and aqueous extracts contain four flavonoids derivatives (kaempferol, luteolin, quercetin and Rutin) were identified on the basis of matching retention time with the standards. The total phenolic contents were 56.81 and 81.56 mg/g in 50 mg/ml, in aqueous and methanolic extracts respectively. The antibacterial activity of Laurus nobilis leaves ext
... Show MoreThe ability of microorganisms to attach to living and non-living surfaces and create a biofilm is the cause of numerous long-lasting illnesses, as well as their strong resistance to drugs. Bacterial biofilms consist of intricate assemblies of immobile bacteria. These are located in an extracellular matrix and adhere to various surfaces for a long period. The present study evaluated the antibacterial effectiveness of Plantago major extract against Staphylococcus aureus biofilm. The specimens analyzed in this investigation were skin infections of clinical origin. The current study was not previously studied, particularly in terms of S. aureus biofilm breakdown and inhibition. The disc diffusion method was used to test the antimicrobial activi
... Show MoreThe ability of microorganisms to attach to living and non-living surfaces and create a biofilm is the cause of numerous long-lasting illnesses, as well as their strong resistance to drugs. Bacterial biofilms consist of intricate assemblies of immobile bacteria. These are located in an extracellular matrix and adhere to various surfaces for a long period. The present study evaluated the antibacterial effectiveness of Plantago major extract against Staphylococcus aureus biofilm. The specimens analyzed in this investigation were skin infections of clinical origin. The current study was not previously studied, particularly in terms of S. aureus biofilm breakdown and inhibition. The disc diffusion method was used to test the antimicrobial activi
... Show MoreIn this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show MoreIn the current study, three types of algae namely Tetradesmus nygaardi (MZ801740), Scenedesmus quadricauda (MZ801741) and Coelastrella sp (MZ801742) were extracted by 95% ethanol and hexane against two types of gram positive and two types of gram negative bacteria by wells diffusion methods. Eleven concentrations from the extract of algae (2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/ml) were utilized. It was noticed that ethanolic extraction was more effective than hexane in Scenedesmus quadricauda than the two other mentioned algal species against all pathogenic bacteria, Acintobacter baumanii (ATCC: 19606), Klebsiella pneumonia (ATCC: 13883) Enterococcus faecalis (ATCC: 29212) and Staphylococc
... Show MoreTwo tetradentate ligands type (N2O2) and their complexes with CoII, NiII and ZnII ions were synthesized via two steps; in the first, the precursors W1 and W2 were synthesized from the reaction of 2,6-diamine pyridine or 2,4-diamine tolylene with 2,5-hexanedione respectively in a 2:1 mole ratio. In the second step the ligands [H2L1] and [H2L2] were prepared from the reaction of the two precursor’s with 2-hydroxy-1-naphthaldehyde in 1:2 mole ratio. Metal complexes were synthesized by the reaction of the ligands with equivalent amounts of the metal chloride. The prepared compounds were characterized with the
... Show MoreThis research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.