Home New Trends in Information and Communications Technology Applications Conference paper Audio Compression Using Transform Coding with LZW and Double Shift Coding Zainab J. Ahmed & Loay E. George Conference paper First Online: 11 January 2022 126 Accesses Part of the Communications in Computer and Information Science book series (CCIS,volume 1511) Abstract The need for audio compression is still a vital issue, because of its significance in reducing the data size of one of the most common digital media that is exchanged between distant parties. In this paper, the efficiencies of two audio compression modules were investigated; the first module is based on discrete cosine transform and the second module is based on discrete wavelet transform. The proposed audio compression system consists of the following steps: (1) load digital audio data, (2) transformation (i.e., using bi-orthogonal wavelet or discrete cosine transform) to decompose the audio signal, (3) quantization (depend on the used transform), (4) quantization of the quantized data that separated into two sequence vectors; runs and non-zeroes decomposition to apply the run length to reduce the long-run sequence. Each resulted vector is passed into the entropy encoder technique to implement a compression process. In this paper, two entropy encoders are used; the first one is the lossless compression method LZW and the second one is an advanced version for the traditional shift coding method called the double shift coding method. The proposed system performance is analyzed using distinct audio samples of different sizes and characteristics with various audio signal parameters. The performance of the compression system is evaluated using Peak Signal to Noise Ratio and Compression Ratio. The outcomes of audio samples show that the system is simple, fast and it causes better compression gain. The results show that the DSC encoding time is less than the LZW encoding time.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreCloud point extraction is a simple, safe, and environmentally friendly technique for preparing many different kinds of samples. In this review, we discussed the CPE method and how to apply it to our environmental sample data. We also spoke about the benefits, problems, and likely developments in CPE. This process received a great deal of attention during preconcentration and extraction. It was used as a disconnection and follow-up improvement system before the natural mixtures (nutrients, polybrominated biphenyl ethers, pesticides, polycyclic sweet-smelling hydrocarbons, polychlorinated compounds, and fragrant amines) and inorganic mixtures were examined and many metals like (silver, lead, cadmium, mercury, and so on). We also find
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
The green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.
The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.
In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreThis research has been prepared to isolate and diagnose one of the most important vegetable oils from the plant medical clove is the famous with Alaeugenol oil and used in many pharmaceuticals were the isolation process using a technique ultrasonic extraction and distillation technology simple
Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well- Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.
Paper type:
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreThe present study examines the extraction of lead (Pb), cadmium (Cd) and nickel (Ni) from a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA) and hydrochloric acid (HCl) solution were used as extractants. Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni ). A set of batch experiments were carried out at different conditions of extractant concentration , contact time, pH and agitation speed. The results showed that the maximum removal efficiencies of (Cd, Pb and Ni ) were (97, 88 and 24 )&nbs
... Show More