Home New Trends in Information and Communications Technology Applications Conference paper Audio Compression Using Transform Coding with LZW and Double Shift Coding Zainab J. Ahmed & Loay E. George Conference paper First Online: 11 January 2022 126 Accesses Part of the Communications in Computer and Information Science book series (CCIS,volume 1511) Abstract The need for audio compression is still a vital issue, because of its significance in reducing the data size of one of the most common digital media that is exchanged between distant parties. In this paper, the efficiencies of two audio compression modules were investigated; the first module is based on discrete cosine transform and the second module is based on discrete wavelet transform. The proposed audio compression system consists of the following steps: (1) load digital audio data, (2) transformation (i.e., using bi-orthogonal wavelet or discrete cosine transform) to decompose the audio signal, (3) quantization (depend on the used transform), (4) quantization of the quantized data that separated into two sequence vectors; runs and non-zeroes decomposition to apply the run length to reduce the long-run sequence. Each resulted vector is passed into the entropy encoder technique to implement a compression process. In this paper, two entropy encoders are used; the first one is the lossless compression method LZW and the second one is an advanced version for the traditional shift coding method called the double shift coding method. The proposed system performance is analyzed using distinct audio samples of different sizes and characteristics with various audio signal parameters. The performance of the compression system is evaluated using Peak Signal to Noise Ratio and Compression Ratio. The outcomes of audio samples show that the system is simple, fast and it causes better compression gain. The results show that the DSC encoding time is less than the LZW encoding time.
Rice is a major staple food for more than two thirds of the world population. Pathogenesis-related proteins-10 (PR10) have a range of 154 to 163 amino acid with molecular weight ~ 17 kDa. They are acidic and generally intracellular and cytosolic proteins accumulate in plants in response to biotic and abiotic stresses. In the present study, a PR10 gene and its corresponding protein were characterized in O. sativa, O. barthii, O. glaberrima, O. glumipatula, O. meridionalis, O. nivara, O. rufipogon and O. punctata. The results revealed a narrow range of variation at both DNA and protein levels in all examined species except O. glumipatula. The latter showed a relatively
... Show MoreImage steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the p
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreDigital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreSteganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. The frequency domain is well suited for embedding in image, since hiding in this frequency domain coefficients is robust to many attacks. This paper proposed hiding a secret image of size equal to quarter of the cover one. Set Partitioning in Hierarchal Trees (SPIHT) codec is used to code the secret image to achieve security. The proposed method applies Discrete Multiwavelet Transform (DMWT) for cover image. The coded bit stream of the secret image is embedded in the high frequency subbands of the transformed cover one. A scaling factors ? and ? in frequency domain control the quality of the stego
... Show MoreSteganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.