Home New Trends in Information and Communications Technology Applications Conference paper Audio Compression Using Transform Coding with LZW and Double Shift Coding Zainab J. Ahmed & Loay E. George Conference paper First Online: 11 January 2022 126 Accesses Part of the Communications in Computer and Information Science book series (CCIS,volume 1511) Abstract The need for audio compression is still a vital issue, because of its significance in reducing the data size of one of the most common digital media that is exchanged between distant parties. In this paper, the efficiencies of two audio compression modules were investigated; the first module is based on discrete cosine transform and the second module is based on discrete wavelet transform. The proposed audio compression system consists of the following steps: (1) load digital audio data, (2) transformation (i.e., using bi-orthogonal wavelet or discrete cosine transform) to decompose the audio signal, (3) quantization (depend on the used transform), (4) quantization of the quantized data that separated into two sequence vectors; runs and non-zeroes decomposition to apply the run length to reduce the long-run sequence. Each resulted vector is passed into the entropy encoder technique to implement a compression process. In this paper, two entropy encoders are used; the first one is the lossless compression method LZW and the second one is an advanced version for the traditional shift coding method called the double shift coding method. The proposed system performance is analyzed using distinct audio samples of different sizes and characteristics with various audio signal parameters. The performance of the compression system is evaluated using Peak Signal to Noise Ratio and Compression Ratio. The outcomes of audio samples show that the system is simple, fast and it causes better compression gain. The results show that the DSC encoding time is less than the LZW encoding time.
In modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease
... Show MoreIn this research, the study effect of additive titanium dioxide powder (TiO2) as a lone composite ( Ep+TiO2) and a mixture of (TiO2) and silicon oxide (SiO2), ( Ep+ TiO2+SiO2)as a hybrid composite on the mechanical and physical properties for epoxy coating. Thescompsiteswere prepared by (Hand Lay- the molding) method. The samples were tested for compressive strength, surface hardness, modulus of elasticity, thermal conductivity and diffusion coefficient, from the results obtained showed improvement in mechanical properties after adding ceramic powders, as the alone composite (EP+ TiO2) had the highest compressive strength ( 53.738 ) ᴍPa, the hybrid composite ( EP+TiO2 +SiO2 ) had the
... Show MoreThe impacts of harvested cropland in the double cropping region (DCR) of the northern China plains (NCP) on the regional climate are examined using surface meteorological data and the satellite-derived normalized difference vegetation index (NDVI) and land surface temperature (LST). The NDVI data are used to distinguish the DCR from the single cropping region (SCR) in the NCP. Notable increases in LST in the period May–June are found in the area identified as the DCR on the basis of the NDVI data. The difference between the mean daily maximum temperature averaged over the DCR and SCR stations peaks at 1.27°C in June. The specific humidity in the DCR is significantly smaller than in
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreThe importance of this research is due to its importance goals, Which are about the attempt of researchers to investigate the probability of depending on businesses, environments to transform organizations, performance in away that enhance the leading role of organizations in their environments , and through views of a number of the staff working in the foundation of technical institutes in Mosul. .
After deciding the methodology of the study that ,in one hand ,performs the goals of the study , and achieving a suitable theoretical framework to present the concepts of businesses, environments and the leadin
... Show MoreThis paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.
Universal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain
Densities of double salt [(NH4)2Fe(SO4)2.6H2O] dissolved in distilled water and in ethylene glycol at three temperatures (298.15,303.15 and 308.15)k have been utilized to calculate the apparent molar volume , limiting apparent molar volume ,experimental slop . These results provide as information about solute-solvent, solute-solute interaction and structure-forming, structure-breaking tendency from partial molar expansibility .
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show More