The study conducted to investigate the association between Helicobacter pylori infection and eye diseases (Glaucoma, Cataract, CSR and Uveitis). One hundred and four patients with multiple eye disorders (10-80) years were observed from 10/9/2020 to 18/11/2020 and compared to thirty-one healthy people (19 female and 12 male). Each participant was tested for H. pylori CagAAbs and TNF-α using an enzyme-linked immunosorbent assay (ELISA). The results have shown that there was a non-significant difference (p≥0.05) in the concentration of CagAantibodies in sera of patients with eye diseases except in the case of CSR (central serous chorioretinopathy), which was a significant difference (P≤0.05) compared to the control group. Also, the result
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
The research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show More