<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
Numerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.
There have been many advances in the solar chimney power plant since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve go
... Show MoreThis study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0
... Show MoreThe simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
Darcy-Weisbach (D-W) is a typical resistance equation in pressured flow; however, some academics and engineers prefer Hazen-Williams (H-W) for assessing water distribution networks. The main difference is that the (D-W) friction factor changes with the Reynolds number, while the (H-W) coefficient is a constant value for a certain material. This study uses WaterGEMS CONNECT Edition update 1 to find an empirical relation between the (H-W) and (H-W) equations for two 400 mm and 500 mm pipe systems. The hydraulic model was done, and two scenarios were applied by changing the (H-W) coefficient to show the difference in results of head loss. The results showed a strong relationship between both equations with correlation coefficients of 0.999,
... Show More
In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show More