Al Machraya River was considered as one of the water feeders of Hawizeh Marsh. In 1986, the outlet of this river into the marsh was blocked and the river was used as a main channel for the East Tigris Irrigation Project near Kalat Salih. This causes significant decrease in the available water supply sources, deterioration in the water quality distribution patterns and increasing the stagnation areas within the marsh. This research aims to study the possibility of reusing this river for feeding Hawizeh Marsh. A frequency analysis study was carried out to study the maximum and minimum probable water level (MMPWL) of Tigris River at the upstream of Kalat Salih Barrage. Six statistical models; Normal distribution, Log-Normal type II, Log-Normal type III, Pearson type III, Log- Pearson type III and Gumbel type I distribution were used to estimate the MMPWL. The results show that Pearson type III and Gumbel type I distribution models are the best to fit the maximum and minimum daily water level (WL), respectively, at the upstream of the Barrage. The estimated MMPWL were compared to the required WL in Hawizeh Marsh. The difference between Tigris River and Hawizeh Marsh water levels were found to be not operative to cause a significant flow toward the marsh. Therefore, Al Machraya River cannot be used to feed Hawizeh Marsh.
There are a few studies that discuss the medical causes for diabetic foot (DF) ulcerations in Iraq, one of them in Wasit province. The aim of our study was to analyze the medical, therapeutic, and patient risk factors for developing DF ulcerations among diabetic patients in Baghdad, Iraq.
Rapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show More