This paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via
... Show MoreIn this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
The mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumping performance of the heart, the distribution of stress and strain that characterize regional ventricular function and change in cell biology must be known. The mechanics of the equatorial region of the left, ventricle was modeled by a thick-walled cylinder. The tangential (circumferential) stress, radial stress and longitudinal stress in the wall of the heart have been calculated. There are also significant torsional shear in the wall during b
... Show MoreIt is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show MoreTight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.