Gypseous soil is a collapsible soil, which causes large deformations in buildings that are constructed on it. Various methods have been used to minimise this effect, such as replacing the gypseous soil or using soil stabilisation (grouting or soil improvement). This study was carried out on four types of gypseous soils that have different properties and various gypsum contents. The testing was carried out on remoulded samples to evaluate the compressibility of gypseous soil under different conditions. The samples were grouted with acrylate liquid. The relationships between the injection pressure and the radius of flow, between time of injection and radius of flow, and between time and quantity of acrylate liquid are investigated on four soils. The treated samples showed that the acrylate liquid reduces the compressibility of the gypseous soil by more than 60–70%. This is attributed to the acrylate liquid film coating the gypsum particles and so isolating them from being subjected to the effect of water. The treated gypseous samples exhibited a low collapse potential, where acrylate liquid reduced the collapsibility of the gypseous soil by more than 50–60%. The acrylate liquid affects the shear strength parameters of the gypseous soil by increasing the cohesion and decreasing the angle of internal friction.
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreThe aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreAdsorption techniques are widely used to remove organics pollutants from waste water particularly, when using low cost adsorbent available in Iraq. Al-Khriet powder which was found in legs of Typha Domingensis is used as bio sorbent for removing phenolic compounds from aqueous solution. The influence of adsorbent dosage and contact time on removal percentage and adsorb ate amount of phenol and 4- nitro phenol onto Al-Khriet were studied. The highest adsorption capacity was for 4-nitrophenol 91.5% than for phenol 82% with 50 mg/L concentration, 0.5 gm. dosage of adsorbent and pH 6 under a batch condition. The experimental data were tested using different isotherm models. The results show that Freundlich model resulted in the best fit also
... Show MoreSpent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
In this research a computational simulation has been carried out on the design and properties of the electrostatic mirror and a mathematical expression has been suggested to represent the axial potential of an electrostatic mirror. The electron beam path using the Bimurzaev technique had been investigated as mirror trajectory with the aid of Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements. The Electrode shape of mirror two electrodes has been determined by using package SIMION computer program. Computations have shown that the suggested potentials giv
... Show MoreZygapophyseal joints (or facet joints), are a plane synovial joint which located between the articular facet processes of the vertebral arch which is freely guided movable joints. Ten dried vertebrae were used for the lumbar region and taking (L4) as a sample to reveal stress pathways across the joints by using ANSYS program under different loading conditions which used Finite Elements Analysis model. Results obtained from the ANSYS program are important in understanding the boundary conditions for load analysis and the points of stress concentration which explained from the anatomical point of view and linked to muscle and ligament attachments. This model used as a computational tool to joint biomechanics and to prosthetic im
... Show MoreA simple, rapid, accurate and sensitive spectrophotometric method is proposed for the detennination of chlorprQm<tZine -HCl in pwe form and in pharmaceutical formulation. This method is based on the formation. of ion assodation complexes of dmg with either thymol
blue or bromophenol blue in an acidic buffer at pH values 4.17 and
3.68, respectively.
The ion-pair complexes formed exhibit absorption maxima at 41 Onm for both thymol blue and bromophenol blue. These complexes· are quantitatively extracted &n
... Show MoreApplication of a Fe-bentonite nano clay (Fe-BNC) as modified clay has been investigated for the removal of birlliant green (BG) from aqueous solutions. Atomic force microscope measurements give a detailed information on pore shape and pore size distribution about the clay. These measurements show that the average diameter of the improved clay is 346.84 nm. Batch adsorption experiments were carried out for the removal of (BG) from aqueous solutions onto Fe-BNC. Equilibrium data were fitted to Freundlich and Langmuir isotherm equations and the isotherm constants were determined. Thermodynamic parameters such as free energy, entropy and enthalpy, have been calculated. &n
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.