Preferred Language
Articles
/
8BaeIocBVTCNdQwCFTnJ
Performance assessment of biological treatment of sequencing batch reactor using artificial neural network technique.
...Show More Authors

Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forward ANN, based on influent BOD5, COD and TSS concentrations. ANN ideal performance was measured based on the MSE and 2 values. Higher 2 value up to 94.1% with lowest MSE value were achieved suggesting good performance prediction by the model and its successful employment for the estimation of daily BOD5/COD ratio of SBR biological wastewater treatment effluent.

Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Thu Dec 15 2022
Journal Name
Journal Of Petroleum Research And Studies
Selection of an Optimum Drilling Fluid Model to Enhance Mud Hydraulic System Using Neural Networks in Iraqi Oil Field
...Show More Authors

In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Tue Feb 19 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Federal Board of Supreme Audit and Role in the Assessment of Tax Performance: An Applied Research in The General Commission of Taxes
...Show More Authors

The success of any institution must be based on means to protect its resources and assets from the waste, loss, misuse and the availability of accurate and reliable data by accounting reports to increase its operational efficiency, namely, that the internal control system is considered as a safety valve for top management in any economic unit. The problem is represented by the need for an efficient system, so to ensure its success, there must exist external parties which monitor and evaluate the performance because of its importance by following clear criteria. So, the research problem came to address performance evaluation indicators which are set by the Federal Board of Supreme Audit (FBSA) and identify the extent of its contribution t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 21 2014
Journal Name
Sensors
Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique
...Show More Authors

This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro

... Show More
View Publication
Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Rawaa Emad Jaloud And Fadia Falahfadia Falah
Isolation and Identification of Fungal Propagation in Iraqi Meat and Detection of Aflatoxin B1 Using ELISA Technique
...Show More Authors

Scopus (5)
Scopus
Publication Date
Mon Dec 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Neural Networks as a Discriminant Purposes
...Show More Authors

Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.

In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.  

 

 

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin

... Show More
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sat May 08 2021
Journal Name
Annals Of The Romanian Society For Cell Biology
Sequencing of IL-10 Gene Promoter for -592 (A/C) and -1082 (A/G) Positions in Iraqi Children Patients with Type 1 Diabetes Mellitus
...Show More Authors

We studied the relationship between DNA sequencing of interleukin-10 (IL-10) gene promoter for -1082 (A/G) and -592 (A/C) positions with the concentration of IL-10 in blood serum of Iraqi children with type 1 diabetes mellitus (T1D). Fifty blood serum samples collected from children with age ranged between 7-12 years. Thirty-five blood samples collected from patient children with T1D, and compared with 15 healthy children age matched as control sample. The results revealed decreasing in anti-inflammatory IL-10 concentration in T1D patient’s blood serum (0.068 Pg/ml) as compared with the control sample (0.111 Pg/ml). No significant differences were found in interleukin concentration between the studied samples when they analyzed with the M

... Show More
Preview PDF