Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forward ANN, based on influent BOD5, COD and TSS concentrations. ANN ideal performance was measured based on the MSE and 2 values. Higher 2 value up to 94.1% with lowest MSE value were achieved suggesting good performance prediction by the model and its successful employment for the estimation of daily BOD5/COD ratio of SBR biological wastewater treatment effluent.
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreAn electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreThe catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w
Microbial water disinfection with UV rays is a universal technology. Disinfection is a method used to treat drinking water. This can be accomplished using physical and/or chemical processes. Physical Methods: Heating and UV rays are two main methods - UV rays to destroy cells and kill bacteria. The physical process generally gives drinking water an instant purification without producing harmful substances. However, there is no pollution in the water to ensure continuous cleaning. This study’s primary goal is to obtain environmentally safe drinking water in situations of water shortages and homes that lack clean water. Therefore, resort to appropriate home treatment. Therefore, an ex
Malaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The study using Nonparametric methods for roubust to estimate a location and scatter it is depending minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .
It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu
... Show MoreAn agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of
... Show More