Preferred Language
Articles
/
8BZuuIcBVTCNdQwC8V6m
Predication of Most Significant Features in Medical Image by Utilized CNN and Heatmap.
...Show More Authors

The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to computed and recognized dependably. In this paper, we target to utilized CNN and heatmap to recognized most significant features that the network should focus on it. depending on class activation mapping. The goal of this study is to develop an approach that can determine the most significant features from medical images (such as x-ray, CT, MRI) through gradient the different tissue accurately by made use of heatmap. In our model, we take the gradient with regard to the final convolutional layer and after that weigh it towards the output of this layer. The model is based upon class activation mapping. However, the model is differed from traditional activation mapping based methods, that this model is the dependent on gradients via obtaining the weight of all activation map via make use of it is forward passing score over target class, then the final result is apart from linear combination of activation and weights. The results appears that the model is successfully distortion heat map of tissues in various medical image techniques and obtained better visual accuracy and fairness for interpretation the decision-making procedure.

Scopus
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Boundary & Geometric Region Features Image Segmentation for Quadtree Partitioning Scheme
...Show More Authors

In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.

Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges
...Show More Authors

The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Fri Sep 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
. Medical Image Compression using Hybrid Technique of Wavelet Transformation and Seed Selective Predictive Method
...Show More Authors

Publication Date
Wed Dec 08 2021
Journal Name
Scientific Reports
Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions
...Show More Authors
Abstract<p>Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app</p> ... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Research In Science And Technology
Encryption of Medical Image Based on Cascaded Design of AES Block Algorithm and Chaotic Map
...Show More Authors

Security concerns in the transfer of medical images have drawn a lot of attention to the topic of medical picture encryption as of late. Furthermore, recent events have brought attention to the fact that medical photographs are constantly being produced and circulated online, necessitating safeguards against their inappropriate use. To improve the design of the AES algorithm standard for medical picture encryption, this research presents several new criteria. It was created so that needs for higher levels of safety and higher levels of performance could be met. First, the pixels in the image are diffused to randomly mix them up and disperse them all over the screen. Rather than using rounds, the suggested technique utilizes a cascad

... Show More
View Publication
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (16)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
A General Overview on the Categories of Image Features Extraction Techniques: A Survey
...Show More Authors

In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.

View Publication Preview PDF
Crossref