The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to computed and recognized dependably. In this paper, we target to utilized CNN and heatmap to recognized most significant features that the network should focus on it. depending on class activation mapping. The goal of this study is to develop an approach that can determine the most significant features from medical images (such as x-ray, CT, MRI) through gradient the different tissue accurately by made use of heatmap. In our model, we take the gradient with regard to the final convolutional layer and after that weigh it towards the output of this layer. The model is based upon class activation mapping. However, the model is differed from traditional activation mapping based methods, that this model is the dependent on gradients via obtaining the weight of all activation map via make use of it is forward passing score over target class, then the final result is apart from linear combination of activation and weights. The results appears that the model is successfully distortion heat map of tissues in various medical image techniques and obtained better visual accuracy and fairness for interpretation the decision-making procedure.
The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services
... Show MoreThis research provides a study of the virtual museums features and characteristics and contributes to the recognition of the diversity of visual presentation methods, as the virtual museums give the act of participation and visual communication with programs at an open time, so that it would contribute to reflection, thinking and recording notes, developing the actual and innovative skills through seeing the environments. The study has been divided into two sections the first one is virtual museum techniques. The techniques were studied to reach the public and are used remotely by the services of personal computers or smart phones being virtual libraries that store images and information that was formed and built in a digital way and how
... Show MoreMethods: 112 placentae samples were investigated during the period from August 2007 to August 2008 under light microscopefor mother aged 15 - 45 years old.Results: It was found that normal placental shapes had no correlation to mother age, while abnormal shapes were found more inyoung age groups. The better placental measured parameters were found in mother age 20-24 years. The percentages ofabnormal umbilical cord insertion were very high compared to other studies. Babies’ gender had a correlation with theplacental thickness; male babies have thicker placentae than females. Male babies have longer umbilical cords with widerdiameter than females. Light microscope picture showed the chorionic villi with isolated fetal blood vessel were hig
... Show MoreIndicators of government debt is of extreme importanse in economic activity through knowledge of the economic impact of government debt, if the phenomenon is accepted or prepared to dangerous stage by stage, and there fore it can Through these indicators to measure the degree of indebtedness in relation to the economic activity of the Government on the one hand, the governments ability to repay the other hand.
Due to this it inferred that the degree of indebtedness in Iraq specificratio has exceed 60% during the period 1990 – 2002 ntejh lack of political and economic stability of the government, which led to the governments inability to repay the ma
... Show MoreThree types of medical commercial creams Silvazine, Cinolon Tar and Hydroquinon Domina were incorporated in this study. The medical creams were taken directly and placed uniformly on the glass slide. Each type of pharmaceutical was weighed at 1 mg and dispersed on an area of 1x1 cm. This process ensures same thickness for all samples. The creams were analyzed by using double-beam UV/visible spectrophotometer Metertech SP8001. The absorption spectrum for each of samples was measured against wavelength range of 300–700 nm.
In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show MoreThis presented study is to make comparison of cross sections to produce 71As, 72As, 73As and 74As via different reactions with particle incident energy up to 60 MeV of alpha 100 MeV of proton as a part of systematic studies on particle-induced activations on enriched Ge, Ga, Rb and Nb targets and neutron capture. Theoretical calculation of production yield, and suggestion of optimum reaction to produce 71As, 72As, 73As and 74As, based on the main published and approved experimental results of excitation functions were calculated.
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show More