Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
This work presents plants recognition system with rotation invariant based on plant leaf. Wavelet energy features are extracted for sub-images (blocks) beside three of leaf shape features: [area, perimeter, circularity ratio]. (8) species of leaves are used in different size and color, (15) samples for each leaf are used. Leaves images are rotated at angles: 90˚, 180˚, 270˚(counterclockwise,clockwise). Euclidean distance is used, the recognition rate was 98.2% with/without rotation.
The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreA new simple sensitive and selective spectrophotometric method has been developed for the analysis of vanadium(V) in three randomly chosen samples from river water at different locations by continuous flow injection analysis. The method based on the oxidation of pyrogallol by vanadium(V) in acidic solution to form color species and the same species was determined using homemade Ayah 6SX1-T-2D solar cell analyser . Chemical and physical parameters were investigated using the high intensity of snow white light emitted diode as a source. The linear dynamic range for the instrument response versus vanadium(V) concentration was 1-200 mg.L-1 with correlation coefficient r = 0.9920. The limit of detection (S/N=3) was 70 ng/ sample from the step
... Show MoreA new simple sensitive and selective spectrophotometric method has been
developed for the analysis of vanadium(V) in three randomly chosen samples from
river water at different locations by continuous flow injection analysis. The method
based on the oxidation of pyrogallol by vanadium(V) in acidic solution to form color
species and the same species was determined using homemade Ayah 6SX1-T-2D
solar cell analyser . Chemical and physical parameters were investigated using the
high intensity of snow white light emitted diode as a source. The linear dynamic
range for the instrument response versus vanadium(V) concentration was 1-200
mg.L-1 with correlation coefficient r = 0.9920. The limit of detection (S/N=3) was 70<
This study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface
... Show MoreA newly developed analytical method characterized by its speed and sensitivity for
the determination of cadmium (II) in aqueous solution in three randomly chosen
samples from river water at different locations via turbidimetric measurement by
Ayah 6SX1-T-2D Solar - CFI analyser. The method is based on the formation of
yellowish white precipitate for the complex Cd3[Fe(CN)6]2 by direct reaction of the
cadmium (II) with potassium hexacyano ferrate (III) in aqueous medium. Turbidity
was measured via the reflection of incident light that collides on the surfaces
precipitated particles at 0-180o. Chemical and physical parameters were investigated.
Linear dynamic of cadmium (II) is ranged from 0.05-12 mmol.L-1, with cor