Warm Mix Asphalt (WMA) is a modern energy-saving process that uses environmentally friendly materials, has lower mixing and compaction temperatures, and uses less energy and releases less contaminants than conventional hot mix asphalt. Moisture damage poses one of the main challenges of the material design in asphalt pavements. During its design life, the asphalt pavement is exposed to the effect of moisture from the surrounding environment. This research intends to investigate the role of the polypropylene fibres for modifying the moisture susceptibility for the WMA by using different percentages of polypropylene (namely 2, 4, and 6%) by weight of the binder of the control mixture (WMA). In this paper, the physical characteristics of the asphalt cement, Marshall properties, Tensile Strength Ratio (TSR) and Index of Retained Strength (IRS) were determined to establish the effect of the polypropylene on the moisture susceptibility of the WMA. The results displayed that the modification of the AC with polypropylene caused an increase in the optimum asphalt content by 1.03, 3.09, and 11.3%, with the addition of 2, 4 and 6% of the P.P., respectively. The moisture resistance of the asphalt mixture was enhanced by adding the P.P., according to the rise in the Tensile Strength Ratio (TSR) and Index of Retained Strength (IRS) values. The TSR value showed 9.4, 18.2 and 19.5% increase when the P.P. increased from 0.00 to 0.02, 0.04, and 0.06, respectively; besides, the IRS showed improvement with the addition of the P.P. to the WMA. Doi: 10.28991/cej-2021-03091704 Full Text: PDF
The Asphalt cement is produced as a by-product from the oil industry; the asphalt must practice further processing to control the percentage of its different ingredients so that it will be suitable for paving process. The objective of this work is to prepare different types of modified Asphalt cement using locally available additives, and subjecting the prepared modified Asphalt cement to testing procedures usually adopted for Asphalt cement, and compare the test results with the specification requirements for the modified Asphalt cement to fulfill the paving process requirements. An attempt was made to prepare the modified Asphalt cement for pavement construction in the laboratory by digesting each of the two penetration grade Asphalt c
... Show MoreGypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize
... Show MoreRutting is one of the major distresses in pavement. The objective of this paper is to develop an improved asphalt binder grading system for Iraq based on the principal of Superpave system, and increasing performance grade of product asphalt binder in Iraq using polymers without raising the viscosity of the binder. Two types of polymers are used, Plastomers, Functionalized Polyethylene (PE) which is developed by asphalt research group in Wisconsin University in the USA, and Elastomers, Styrene Butadiene Styrene (SBS) with and without cross linker. Mastercurve are drown for these modified binders, Rolling thin film aged, to show effects on rheological properties at high temperature for complex modulus (G*) and phas
... Show MoreStone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t
... Show MoreThe nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
Inhaled corticosteroids are the most effective controllers of asthma, although asthmatics vary in their response. FKBP51 is a major component of the glucocorticoid receptor which regulates its responses to corticosteroids. Therefore, the present study aims to identify the role of FKBP5 gene polymorphism in asthma susceptibility and corticosteroid resistance.
DNA was extracted from the blood of 68 asthmatic
In this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show MoreFemtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying
... Show MoreIn this work, PAni nanofibers (NFs) are successfully synthesized via hydrothermal method. The structural, surface morphological, optical, electrical and H2S gas sensing properties have been investigated for PAni thin films deposited by spin coating technique. The XRD pattern reveals crystalline nature of PAni NFs with crystallite size of 9.2 nm. The SEM image of Polyaniline clearly indicates that the polymer possesses nanofiber like structure. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc’s equation. Intense hotoluminescence (PL) peaks at 309, 340 and 605 nm are observed. The electrical properties such as D.C. conductivity and Hall effect have been studied wher
... Show MoreA numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame
... Show More