Development and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential for utilization. The catalyst was characterized by different analytic techniques such as XRD, SEM-EDS, FT-IR, and BET analyses. Several parameters impacted on the transesterification process were exploited by conventional transesterification (batch). The result revealed that the optimum reaction was reached at a methanol to oil ratio of 50% w/w, catalyst loading of 3%, temperature of 65℃ and reaction time of 1.5 h with a yield of 93.21%, and the activation energy of the transesterification reaction was found to be 38.906 KJ mol-1. The reaction was verified to be irreversible pseudo-first order based on a linear Arrhenius plot and a high R2 value. The catalyst shows good stability and catalytic activity when it is reused and the yield was found to be 80.293% in the 5th cycle.
Background: Helicobacter pylori are important gastrointestinal pathogen associated with gastritis, peptic ulcers, and an increased risk of gastric carcinoma. There are several popular methods for detection of H. pylori (invasive and non-invasive methods) each having its own advantages, disadvantages, and limitations, and by using PCR technique the ability to detect H. pylori in saliva samples offers a potential for an alternative test for detection of this microorganism. Materials and methods: The study sample consists of fifty participants of both genders, who undergo Oesophageo-gastrodudenoscopy at the Gastroenterology Department of Al-Kindy Teaching Hospital Baghdad/ Iraq, during five months period from January 2014 to May 2014. They we
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreThis study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o
... Show MoreSynthesis, Characterization And Biological Evaluation of New Schiff Bases MixedLigand Metal Complexes of Some Drug Substances
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Salicylaldehyde was react with 4-amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-on to produce the Schiff base ligand 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazoline-5-on (L). The prepared ligand was identified by Microelemental Analysis, and FT.IR, UV-Vis spectroscopic techniques. A new complexes of Fe(III),Co(II),Ni(II),Cu(II),Ce(III) and Pb(II) with mixed ligands of dithizone (DTZ) and Schiff base were prepared in aqueous ethanol with a 2:2:1 M:L:DTZ. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the ligands and complexes against two selected type of bacteria
... Show MoreThe mixed ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with alanine and 8-hydroxyqinoline (Oxine) were synthesized and characterized by FT-IR ,spectra electronic, flam-AAS] along with conductivity measurements , solubility , melting point, magnetic susceptipibility.The synthesized complexes were tested in vitro for antimicrobial activity. The results obtained indicated that some of these complexes are more active than with others.
The reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show More