This paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional bulk queues. This new model focus on mixed-integer non-linear programming (MINLP) tenders a mathematical computational approach is known as (0 -1) variables. To measure the efficiency of the method, the efficient solution strategy plays a crucial role in the adequate application of these techniques. Furthermore, different stages of the α-cut intervals were analyzed and the final part of the article gives a numerical solution of the proposed model to achieve practical issues.
Background: This in vitro study measure and compare the effect of light curing tip distance on the depth of cure by measuring vickers microhardness value on two recently launched bulk fill resin based composites Tetric EvoCeram Bulk Fill and Surefil SDR Flow with 4 mm thickness in comparison to Filtek Z250 Universal Restorative with 2 mm thickness. In addition, measure and compare the bottom to top microhardness ratio with different light curing tip distances. Materials and Method: One hundred fifty composite specimens were obtained from two cylindrical plastic molds the first one for bulk fill composites (Tetric EvoCeram Bulk Fill and Surefil SDR Flow) with 4 mm diameter and 4 mm depth, the second one for Filtek Z250 Universal Restorative
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreThis research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv
... Show MoreThis study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreIn this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show More