An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.
Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.
An -module is extending if every submodule of is essential in a direct summand of . Following Clark, an -module is purely extending if every submodule of is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module is Goldie extending if, for each submodule of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module is purely Goldie extending if, for each , there is a pure submodule P of such that . Many c
... Show Morehe concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show MoreIn this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.
Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J- submodules as a – and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module J- module if every submodule of is quasi J-pure. Many results about this concept
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.
A Module M is called cofinite J- Supplemented Module if for every cofinite submodule L of M, there exists a submodule N of M such that M=L+N with main properties of cof-J-supplemented modules. An R-module M is called fully invariant-J-supplemented if for every fully invariant submodule N of M, there exists a submodule K of M, such that M = N + K with N K K. A condition under which the direct sum of FI-J-supplemented modules is FI-J-supplemented was given. Also, some types of modules that are related to the FI-J-supplemented module were discussed.
In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.