This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 concentration, and UV intensity were investigated. In contrast, the flow rate, E-Fe/Cu@BNPs height, DB15 concentration, and UV intensity were examined in the fixed-bed column. The response surface methodology based on the Box–Behnken design (BBD) was used to optimize both studied systems. The batch results showed that 100 mg/L of DB15 was completely degraded within 60 min with optimum pH 3.5, H 2 O 2 dosage of 7.5 mmol/L, and UV intensity of 15 W/m2. The kinetic study indicated that the DB15 degradation was fitted to the second-order kinetic model. The optimized parameters for the fixed-bed system were determined as 1mL/min, 1 cm, 100 mg/L, and 15 W/m2 for flow rate, E-Fe/Cu@B-NPs height, DB15 concentration, and UV intensity.
Background: One of the unique prosthesis for tooth or teeth replacement is the dental implant. Our attempt is using a biomaterial system that is easily obtained and applicable and has the ability to provoke osteoinductive growth factor to enhance bone formation at the site of application. One of these natural polymers is hyaluronic acid. Material and methods: Sixty machined surface implants from commercially pure titanium rod inserted in thirty NewZealand rabbits. Two implants placed in both tibia of each rabbit. The animals scarified at 1, 2 and 4 weeks after implantation (10 rabbits for each interval). For all of animals the right tibia’s implant was control (uncoated) and the left one was experimental (coated with 0.1ml Hyaluro
... Show MoreThe risk of significant concern is resistance to antibiotics for public health. The alternative treatment of metallic nanoparticles (NPs), such as heavy metals, effects on antibiotic resistance bacteria with different types of antibiotics of - impossible to treat using noval eco-friendly synthesis technique nanoparticles copper oxide (CuO NPs) preparation from S. epidermidis showed remarkable antimicrobial activity against S.aureus Minimum inhibitory concentra range (16,32,64,256,512) µg/ml via well diffusion method in vitro, discover those concentrations effected in those bacteria and the best concentration is 64 µg/ml, characterization CuO NPs to prove this included atomic force microscope, UV, X-ray Diffraction and TEM, and ant
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreBackground:The technology of nanoparticles has been expanded to many aspects of modern life. Titanium dioxide nanoparticles were of many nanomaterials utilized in biomedical applications. The interactions between nanoparticles and proteins are believed to be the base for the biological effect of the nanoparticles. The oxidation reaction of many substances is catalyzed by oxidizing enzymes called peroxidases. The activity of salivary peroxidase is elevated with periodontal diseases. the aim ofthis study is to examine the action of titanium dioxide nanoparticles on salivary peroxidase activity.Material and method75 participants were enrolled in this study—Periodontitis group with 44 participants and the non-periodontitis group with 31 pa
... Show MoreLaryngoscopy and tracheal intubation are considered the most invasive stimuli in anesthesia. They provoked cardiovascular responses that include hypertension, tachycardia and dysrhythmias. Various pharmacological approaches have been used to blunt or attenuate such pressor responses. The present study was designed to evaluate the effect of medazolom, lignocaine and propranolol as a valuable adjuvant to fentanyl in attenuating hemodynamic responses to endotracheal intubation in normotensive patients. Thirty two patient with physical status I or II according to the score of American Society of Anesthesiologist (ASA), scheduled for elective surgery under standard general anesthesia, were randomly allocated into four groups (8 patients in ea
... Show MoreSemiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreIn this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
The Fylex extract exert a high inhibition effect against A . flavus growth on PDA medium, as the fungus growth was completely inhibited by 100% at a concentration of 0.2 and 0.3% of studied extract, while the lowest inhibition percentage (71%) was found at a concentration of 0.1%. Whereas magnesium oxide nanoparticles showed the highest inhibition ratio of A. flavus (100%) was detected at 0.2% and the lowest inhibition ratio (81.66%) was at concentration 0.5%. Moreover, the addition of G. lucidum powder to PDA medium with a concentration of 2.5 mg increased the inhibition rate of A. flavus growth which was 54.4%, while the lowest inhibition ration (18.22%) was found at a concentration of 1000 mg. The milky liquid (brocade milk) of Calotropi
... Show More