The ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f
... Show MoreA new series of Fe (III) , Co (II) , Ni (II) and Cu (II) complexes of the Schiff base, 5 (2-hydroxy benzylidine) -2-thio ether -1, 3, 4-thiadiazole were prepared and characterized .The imine behaves as a bidentate. The nature of bonding and the stereochemistry of the complexes were deduced from metal analyses, infrared, electronic spectra,magnetic susceptibility and conductivity measurements, an octahedral geometry was suggested for all complexes except the copper complex has a square planar geometry .preliminary in vitro tests for antimicrobial activity show that all the prepared compounds except iron complex display good activity to gram positive Staphelococcus aures and gram negative Escherchia coli.
This research discloses the synthesis of various polyester resins, the polyesters containing homoring aromatic and others heterocyclic were synthesized by the condensation polymerization of suitable monomers (which are containing variety function groups in different structures) with phthalic anhydride. The main objective is synthesis of new polyester with keeping a reasonable electrical insulating behavior. The structural of polymer was characterized by Fourier Transform infra-red spectroscopy FTIR and HNMR. The dielectric constant (real ε' and imaginary parts ε") and AC conductivity (σAC) for all the polyester samples are studied by varying the frequency (30, 50, 70, 90, 120, 300, 500Hz and 1KHZ) at 25⁰ C. Indeed, study of the electri
... Show MoreComplexes reaction of Fe+2, Cd+2, Hg+2 and Ag+ with the 2-thiotolylurea were prepared in ethanolic medium with the (1:1) M:L ratio yielded a series of neutral complexes. The prepared complexes were characterized using flame atomic absorption, micoelemental analysis (C.H.N), chloride content (Mohr Method) , FT.IR and UV-Vis spectroscopic, as well as magnetic susceptibility and conductivity measurement. From the above data, the proposed molecular structure for Fe+2, Cd+2 and Hg+2 complexes are tetrahedral geometry while Ag+ complex is trigonal structure.
Schiff bases (SBs) based on amino acid derivative stand for multipurpose ligands that formed by condensing amino acids with carbonyl groups. They are significant in pharmaceutical and medical areas due to their widespread biological actions such as antiseptic, antifungal, along with antitumor actions. Transition metallic complexes resulting from SB ligands with biological activity were extensively experimented in the literature. In this article, we review, in details, about synthesizing and biological performances of SBs along with its complexes.
M(II) Ions using amino acid L- proline as a primary ligand and either Nicotinamide or 8- hydroxyqinoline as secondary ligand, respectively: a. The mixed ligand complexes of composition,[M(pro)2(na)2]. b. The mixed ligand complexes of composition , Na[M(pro)2(Q)]. Where proline (C5H9NO2) symbolized as pro H , Nicotinamide (C6H6N2O) symbolized as (NA) , 8- hydroxyqinoline, (C9H7NO2) symbolized as (8-HQ). The ligands and the metal chlorides were brought into reaction at room temperature (37ºc) in ethanol as solvent .The reaction required the following molar ratios [(1:2:2) metal:2NA:2pro-] and [(1:1:2) metal:Q:2pro-] with M+2 ions, where M = [Mn (II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and pd(II)]. Products were found to be solid crystall
... Show More