Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Wed Jun 17 2020
Journal Name
Journal Of Research In Medical And Dental Science
Impact of Thumb Sucking Habit on Eruption of Permanent Teeth and Intelligence Quotient Among Children in Karbala City, Iraq
...Show More Authors

Background: There is a pronounced controversy regarding the dental and mental consequences of thumb sucking habit, which is a familiar nonnutritive pattern of sucking. Commonly, this behavior is harmless, yet those who sustain this pattern may have dental alterations and emotional difficulties. Children’s intelligence level influences their capabilities to judge, evaluate and handle priorities and/or problems profoundly and precisely. Thumb sucking habit might be a manner of liberating the psychological tenseness among several children. Objective: The purpose of this study is to assess the prevalence of thumb sucking habit and its relation to the eruption of permanent teeth and IQ among children aged 6-7 years old. Subjects and methods: I

... Show More
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Emotional Intelligence competences and Transformational Leadership on Organizational Performance An Investigation Study at Al-Rafidain Bank
...Show More Authors

          The research deal with three variables of exceptional importance to organization business firms. These variables are emotional intelligence, transformational leadership, and organizational performance. The aim of this research is to determine the effect of emotional intelligence and transformational leadership on organizational performance at the banking sector, which is represented by Al-Rafidain Bank. The problem of the research is expressed by many questions related with the nature of the interrelationships and effects among research’s variables. The researcher has depended upon the descriptions - analytical approach. on a random sample of (80 ) managers

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Oxygen Mass Transfer Coefficients in Stirred Bioreactor with Rushton Turbine Impeller for Simulated (Non-Microbial) Medias
...Show More Authors

 Abstract

The study of oxygen mass transfer was conducted in a laboratory scale 5 liter stirred bioreactor equipped with one Rushton turbine impeller. The effects of superficial gas velocity, impeller speed, power input and liquid viscosity on the oxygen mass transfer were considered. Air/ water and air/CMC systems were used as a liquid media for this study. The concentration of CMC was ranging from 0.5 to 3 w/v. The experimental results show that volumetric oxygen mass transfer coefficient increases with the increase in the superficial gas velocity and impeller speed and decreases with increasing liquid viscosity. The experimental results of kla were correlated with a mathematical correlation des

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (67)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
INFLUENCE OF PHYSICAL PROPERTIES OF WATER-ADJUVANT MIXTURE ON THE DROPLET STAINS DEPOSITING ON AN ARTIFICIAL TARGET
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Outdoor Testing of a Zig-Zag Solar Air heater with and without Artificial Roughness on Absorber Plate
...Show More Authors

In this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of  Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
ESTIMATION OF MUNICIPAL SOLID WASTE GENERATION AND LANDFILL VOLUME GENERATION AND LANDFILL VOLUME USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system
...Show More Authors

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
View Publication
Scopus (21)
Crossref (9)
Scopus Crossref
Publication Date
Fri Sep 15 2017
Journal Name
Journal Of Baghdad College Of Dentistry
The Effect of Artificial Saliva on The Surface Roughness of Different Esthetic Archwires (An in Vitro Study)
...Show More Authors

Background:The demand for esthetic orthodontic appliances is increasing so that the esthetic orthodontic archwires were introduced. This in vitro study was designed to evaluate the surface roughness offiber-reinforced polymer composite (FRPC) archwires compared to coated nickel-titanium (NiTi) archwires immersed in artificial saliva. Materials and Methods:Three types of esthetic orthodontic archwires were used: FRPC (Dentaurum), Teflon coated NiTi (Dentaurum) and epoxy coated NiTi (Orthotechnology). They were round (0.018 inch) in cross section and cut into pieces of 15 mm in length.Forty pieces from each type were divided into four groups; one group was left at a dry condition and the other three groups were immersed in artificial saliva (

... Show More
View Publication Preview PDF
Crossref (3)
Crossref