Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Travel Time Prediction Models and Reliability Indices for Palestine Urban Road in Baghdad City
...Show More Authors

Abstract

     Travel Time estimation and reliability measurement is an important issues for improving operation efficiency and safety of traffic roads networks. The aim of this research is the estimation of total travel time and distribution analysis for three selected links in Palestine Arterial Street in Baghdad city. Buffer time index results in worse reliability conditions. Link (2) from Bab Al Mutham intersection to Al-Sakara intersection produced a buffer index of about 36%  and 26 % for Link (1) Al-Mawall intersection to Bab Al- Mutham intersection and finally for link (3) which presented a 24% buffer index. These illustrated that the reliability get worst for link

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm
...Show More Authors

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Month – to – Month Until N Years Prediction for Planning a Productive Firm
...Show More Authors

      This paper offers a monthly prediction method for planning production, inventory, workforce, sales and prices until N years. Each monthly decision will depend on last month, decisions and take in consideration the future forecasted demand. The manager can run the program in any month within a year. This method is executed by computer programming technique to maximize profits.

View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Roadway Deterioration Prediction Using Markov Chain Modeling (Wasit Governorate/ Iraq as a Case Study)
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Diagnostic Evaluation of Uterine Artery Doppler Imaging for the Prediction of Early Abnormal Pregnancy
...Show More Authors

Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy.

Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Diagnostic Evaluation of Uterine Artery Doppler Imaging for the Prediction of Early Abnormal Pregnancy
...Show More Authors

Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was

... Show More
Crossref
Publication Date
Tue Mar 29 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Prediction of bearing capacity of driven piles for Basrah governatore using SPT and MATLAB
...Show More Authors

Based on the results of standard penetration tests (SPTs) conducted in Al-Basrah governorate, this research aims to present thematic maps and equations for estimating the bearing capacity of driven piles having several lengths. The work includes drilling 135 boreholes to a depth of 10 m below the existing ground level and three standard penetration tests (SPT) at depths of 1.5, 6, and 9.5 m were conducted in each borehole. MATLAB software and corrected SPT values were used to determine the bearing capacity of driven piles in Al-Basrah. Several-order interpolation polynomials are suggested to estimate the bearing capacity of driven piles, but the first-order polynomial is considered the most straightforward. Furthermore, the root means squar

... Show More
Scopus (25)
Crossref (27)
Scopus Clarivate Crossref