Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Enhancing national security through foreseeing the economic intelligence system in Iraq
...Show More Authors

 

         Economic intelligence represents a modern field of knowledge that has been and is still the focus of many studies and research, including this research that deals with economic intelligence and its role in strengthening Iraqi national security - an analytical study. Economic development and economic development without security, and in a situation such as that of Iraq, which is still suffering from conflicts, conflicts and the effects of wars, as well as the unstable conditions in its regional environment, the directions of that relationship cannot be determined except through the availability of accurate information, indicators, full knowledge of reality and the pos

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
SPEECH RECOGNITION OF ARABIC WORDS USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus (11)
Scopus
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref
Publication Date
Mon Mar 27 2023
Journal Name
Aip Conference Proceedings
Stability of Kongele earth dam against rapid drawdown of water from reservoir
...Show More Authors

ABSTRACT In dam construction stages when an earth embankment has retained a reservoir with constant water surface elevation for a long time, seepage conditions within the embankment will be reach a steady state. If it is necessary to drain the reservoir quickly, the pore-water pressures in the embankment may remain relatively high while the stabling effect of the reservoir's weight along the upstream (U/S) side for the embankment has removed. This process is referring to as "Rapid Drawdown" and may be cause instability in the upstream (U/S) face of the embankment. Kongele dam is one of the proposed earth dams to be implement within the current plan in Iraq. The authors study pore water pressure and the effect of rapid drawdown for the dam d

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Discrete Fracture Network and Fractured Reservoir Characterization in Khabaz Field-Tertiary Formation
...Show More Authors

View Publication
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Velocity Patterns inside the Proposed Makhool Dam Reservoir with Different Operation Plans
...Show More Authors
Abstract<p>The Makhoul Dam project proposed to be established is considered one of the strategic projects in Iraq as it works to insurance large quantity of water spare in flood seasons, increase the storage capacity of the dams in Iraq, as well as increase food security. The Makhool Dam is located on Tigris River in Salah al-Din Governorate, and 8 km south of the meeting point of the Tigris River with the Lower Zab River. The lake area is about 256 km2. In this research, a mathematical model was prepared by using HEC-RAS Two Dimension Software to analyze the velocity patterns and water depths inside makhool dam reservoir at the highest operational water elevation, based on the designs prepared </p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jul 30 2025
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Techniques
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-

... Show More
View Publication
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile Position Estimation using Artificial Neural Network in CDMA Cellular Systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More