Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Tue Sep 01 2015
Journal Name
2015 7th Computer Science And Electronic Engineering Conference (ceec)
An experimental investigation on PCA based on cosine similarity and correlation for text feature dimensionality reduction
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Fri Jan 05 2018
Journal Name
International Journal Of Science And Research (ijsr)
Image Steganography Based on Discrete Wavelet Transform and Chaotic Map, IJSR, Call for Papers, Online Journal
...Show More Authors

'Steganography is the science of hiding information in the cover media', a force in the context of information sec, IJSR, Call for Papers, Online Journal

View Publication
Publication Date
Wed Sep 01 2010
Journal Name
The International Journal Of Biochemistry & Cell Biology
A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase
...Show More Authors

Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given

... Show More
View Publication
Scopus (24)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Developing Load Balancing for IoT - Cloud Computing Based on Advanced Firefly and Weighted Round Robin Algorithms
...Show More Authors

The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities.   Cloud computing can be used to store big data.  The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Ceramics International
High-performance (K,Na)NbO3-based binary lead-free piezoelectric ceramics modified with acceptor metal oxide
...Show More Authors

View Publication
Scopus (37)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Electronics
Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems
...Show More Authors

Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Optical Fiber Technology
A novel modified fiber Bragg grating (FBG) based ammonia sensor coated with polyaniline/graphite nanofibers nanocomposites
...Show More Authors

View Publication
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Computers & Fluids
Assessing moment-based boundary conditions for the lattice Boltzmann equation: A study of dipole-wall collisions
...Show More Authors

View Publication
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Journal Européen Des Systèmes Automatisés
Proxy-based sliding mode vibration control with an adaptive approximation compensator for euler-bernoulli smart beams
...Show More Authors

Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho

... Show More
Crossref (2)
Crossref