The present study aims to study the content and spatial distribution of lead (Pb) contamination in the soils of some Baghdad cities (Middle of Iraq). Twenty soil samples were randomly collected from different land-use in the studied area at a depth between 5 to 30 cm. Ten samples are collected from Al-Rissafa side areas (Adhamiya, Al-Wazeeria (Battery Manufacturer), Shikh Omer, Ziyouna, Karada, Shaab, Sadr city, Al-Za’franiya, Al-Dora expressway, and Alselikh ) and other ten samples are collected from Al-Krakh side areas Al-Dora, Al-Masafi junction, Al-Dora, Sayidia, Al-Salam university college, Al-Bayaa (Industrial District), Jehad, Amirya, Abu Ghraib, Al-hurriya, and Kadhimiya. The soil samples have been analyzed for the lead (Pb) with the utilization of the X-Ray Fluorescence. Based on the results, there is a notable difference in the concentration of Pb compared with the national and international permissible limits. The mean concentrations of Pb are 19507.5, 12.8, 2.2 mg/kg for industrial, roadside, and agricultural respectively and <1 for commercial, residential, and waste dumping sites. The high Pb concentration in the soils has been related to anthropogenic activities. Further, the spatial analysis map showed the high concentration of Pb distribution in the Al-Rissafa side of Baghdad city. The geoaccumulation factor and contamination factor indicate that all the soil samples are uncontaminated except the industrial sites are very high contamination with Pb. Also, by calculating the potential ecological risk, It has been found there is a very high ecological risk in the industrial sites, while a low ecological risk in other sites in the study area. The results showed that the average concentration of Pb in soil was greater than the global soil average.
A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreObjective(s): To determine the impact of the electronic Health Information Systems upon medical, medical Backing and administrativedecisions in Al-Kindy Teaching Hospital. Methodology: A descriptive analytical design is employed through the period of June 14th 2015 to August 15th 2015. A purposive "non- probability" sample of (50) subject is selected. The sample is comprised of (25) medical and medical backing staff and (25) administrative staff who are all involved in the process of decision making in Al-Kindy Teaching Hospital. A self-report questionnaire, of (68) item, is adopted and developed for the purpo
Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment.
... Show MoreBackground: Malnutrition in human life may adversely affect various aspects of growth at different stages of life. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometric measurement involving tooth size dimensions. The aim of this study is to estimate the effect of nutrition on teeth size dimension measurements among children aged 5 years old. Materials and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 158 children aged 5 years (78 malnourished and 80 well-nourished). The assessment of nutritional status was done by using three nutritional indicators, namely Height-for-age, Weight-for-age and Weight-fo
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreIodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show More