Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to stud
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Smart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show More
... Show MoreBismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray p
... Show MoreThe study aims to identify the uses and the impact of social networking applications and websites on stock markets and their role in defining the details of dealing with stock movement and trading. The study also aims to highlight the role of these networks by increasing confidence in stock markets and companies as well as encouraging and inciting young people to invest in these markets, the study belongs to the descriptive analytical approach, the study population consisted of all current and potential investors in the stock and financial markets in the United Arab Emirates. The study used a questionnaire that was distributed to a number of followers of social networking pages and websites that deal with trading
... Show More