Preferred Language
Articles
/
7hb2-okBVTCNdQwCe46x
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The applicability of green productivity tools: An analytical study in a sample of industrial companies in the province of Nineveh
...Show More Authors

                The current research aims to identify the most important green productivity tools GPT and the possibility of applied in industrial companies in general and the companies operating in the province of Nineveh, in particular, as well as the study of some personality characteristics and functional, which is believed to be an impact on the application of these tools in industrial companies. Accordingly, the research community of managers in the company of medicines and medical supplies ready-made clothes _ operating in the province of Nineveh, who are (80) while the manager was subjected to research procedures (49) Director representing (61.25%)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
College Of Islamic Sciences
The Effectiveness of Combining the Meanings of Grammatical Tools in Understanding the Arabic Sentence A study of Some Linguistic Evidences
...Show More Authors

abstract

The grammatical tools (the letters of meanings) are of great importance in understanding the meanings of the Arabic sentences,

This research is a simple attempt to show how our venerable scholars employed the meanings of these tools when they interpreted the linguistic evidence, that is, the grammatical structure largely depends on the tool in forming the meaning within the sentences and employing the meanings of these grammatical tools in explaining the linguistic evidence by clarifying their significance in the contexts of their use and effectiveness. Synthesis of the meanings of grammatical tools is an important tool in understanding the linguistic structure in order to reveal its meaning.

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 18 2018
Journal Name
Al–bahith Al–a'alami
Public exposure to news satellite channels and its relationship to levels of preference and evaluation of programs: Survey study on a sample of the audience of Baghdad City Cente
...Show More Authors

The media, especially the satellite channels in our time, are one of the most important pillars of daily life, public and private, for society and people, and are considered by sociologists and sociologists as one of the most important factors of social upbringing and the most important, as a result of the technological and technological development of the media as well as increasing their numbers and vertical and horizontal expansion locally, As well as entering into the lives of individuals and people and leading them to important sites within their interests and preferences, not to mention the long time spent exposure to those media and benefit from the programs offered or broadcast. , The problem of this research is that there is a l

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (122)
Crossref (115)
Scopus Clarivate Crossref
Publication Date
Sun Sep 30 2018
Journal Name
Scientific Journal Of Silesian University Of Technology. Series Transport
Measuring the relative importance of applying engineering solutions to urban traffic intersections: a planning perspective
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
The suggested threshold to reduce data noise for a factorial experiment
...Show More Authors

In this research, a factorial experiment (4*4) was studied, applied in a completely random block design, with a size of observations, where the design of experiments is used to study the effect of transactions on experimental units and thus obtain data representing experiment observations that The difference in the application of these transactions under different environmental and experimental conditions It causes noise that affects the observation value and thus an increase in the mean square error of the experiment, and to reduce this noise, multiple wavelet reduction was used as a filter for the observations by suggesting an improved threshold that takes into account the different transformation levels based on the logarithm of the b

... Show More
Publication Date
Sun Mar 15 2020
Journal Name
Journal Of The College Of Education For Women
Data-Driven Approach for Teaching Arabic as a Foreign Language: Eygpt
...Show More Authors

Corpus linguistics is a methodology in studying language through corpus-based research. It differs from a traditional approach in studying a language (prescriptive approach) in its insistence on the systematic study of authentic examples of language in use (descriptive approach).A “corpus” is a large body of machine-readable structurally collected naturally occurring linguistic data, either written texts or a transcription of recorded speech, which can be used as a starting-point of linguistic description or as a means of verifying hypotheses about a language.  In the past decade, interest has grown tremendously in the use of language corpora for language education. The ways in which corpora have been employed in language pedago

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
A Multi-variables Multi -sites Model for Forecasting Hydrological Data Series
...Show More Authors

A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Serum Biomarkers are Promising Tools to Predict Traumatic Brain Injury Outcome
...Show More Authors

Traumatic Brain Injury (TBI) is still considered a worldwide leading cause of mortality and morbidity. Within the last decades, different modalities were used to assess severity and outcome including Glasgow Coma Scale (GCS), imaging modalities, and even genetic polymorphism, however, determining the prognosis of TBI victims is still challenging requiring the emerging of more accurate and more applicable tools to surrogate other old modalities

View Publication Preview PDF
Crossref (1)
Crossref