Preferred Language
Articles
/
7hb2-okBVTCNdQwCe46x
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Land Magnetic survey along a profile from Akaz to Rutba town and its applications
...Show More Authors

A land magnetic survey was carried out along regional profile, which is located at the north part of the Iraqi western desert. It starts from al –Qaam City (at north) toward Rutba City (at south) with a total length of 238km. The survey was carried out along the paved road between the two cities, About 113 measuring points were done with inter-station distance of 2 km (for 198 km) and 2 to 5km (for 40km). Two proton magnetometers were used in this survey. One of them is used for base station monitoring, which was fixed as of Salah Aldin field (Akkas). Its readings were used for diurnal corrections. All magnetic measurements were corrected for normal and topographic corrections. The readings were reduced to a certain base level. The resu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 16 2021
Journal Name
Translational Vision Science &amp; Technology
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
...Show More Authors

View Publication
Scopus (39)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (329)
Crossref (295)
Scopus Clarivate Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
The Ocular Surface
Detecting dry eye from ocular surface videos based on deep learning
...Show More Authors

View Publication
Scopus (21)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Thu Jul 13 2023
Journal Name
International Journal Of Research In Social Sciences &amp; Humanities
Subject Review: Blogs as Learning Tools in EFL Classrooms
...Show More Authors

Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Effects of Water Scarcity on Rural Household Economy
...Show More Authors

This study examined the effects of water scarcity on rural household economy in El Fashir Rural Council / North Darfur State- western Sudan. Both quantitative and qualitative methods were used as to get a deeper understanding of the impact of water scarcity on the rural house economy in the study area. 174 households out of 2017 were selected from 45 villages which were distributed in eight village councils forming the study area. Statistical methods were used to manipulate the data of the study. The obtained results revealed that water scarcity negatively affected the rural household economy in the study area in many features. These include the followings: much family efforts and time were directed to fetch for water consequentl

... Show More
View Publication Preview PDF
Crossref (1)
Crossref