Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Objective: The antimicrobial efficacy of three disinfection solutions: 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX) and Listerine mouthwash were investigated as routine chair-side gutta-percha (GP) disinfection reagents. Design: four groups of gutta percha points were contaminated with E. faecalis bacteria then disinfected by immersion in different solutions (5.25% sodium hypochlorite, 2% chlorhexidine gluconate, Listerine mouth wash and distilled water as control) after 1 and 7 days culturing periods. The antibacterial efficacy of these disinfection solutions was evaluated by using colonies per units (CPU) Methods: Forty GP cones (F3 Dentsply) were sterilized with ethylene oxide gas before immersed contamination within broth m
... Show MoreActive Learning And Creative Thinking
Abstract: The aim of the research identify the effect of using the five-finger strategy in learning a movement chain on the balance beam apparatus for students in the third stage in the College of Physical Education and Sports Science, as well as to identify which groups (experimental and controlling) are better in learning the kinematic chain on the balance beam device, has been used The experimental approach is to design the experimental and control groups with pre-and post-test. The research sample was represented by third-graders, as the third division (j) was chosen by lot to represent the experimental group, and a division Third (i) to represent the control group, after which (10) students from each division were tested by lot to repr
... Show MoreThe use of deep learning.
Background: Alum has been used as a treatment medication in cases of oral and gingival ulcers, and also as antiseptic mouthwash. This study aimed to examine the effects of different concentrations of Alum on inhibition zone, viability counts and adherence ability of Mutans streptococci compared with deionized water and chlorhexidine gluconate in vitro. Materials and methods: The study dealt with an in vitro study to establish a concentration of Alum mouthrinse that would have the minimum inhibitory concentration and minimum bacteriocidal concentration. The second part evaluated the anti-adherence ability of the experimental agents. Results: This study found that the antibacterial effect of Alum increases with its concentration from 50 to 1
... Show MoreThe present study attempts to find out the effect of some fish preservatives in the laboratory, such as alcohol and dilute formalin, on some biological characteristics related to the body measurements of those fish preserved in these materials. The fish used in this study were the local Planiliza abu. The processes of expansion and contraction of the bodies of fish preserved in diluted formalin solution at a concentration of 10% and diluted ethyl alcohol solution at a concentration of 70%. As that the standard length of the specimens of this study, which are separately preserved in formalin 10% and alcohol 70%, in a completely isolated are fluctuating in change. Constant shrinkage in head length in both diluted formalin and alcohol.
... Show MoreThe conductance of solu ti ons of cysteine in water at different concentrations and temperatures has been measured. These solutions obey Onsagcr equation and give linear relations especially at low concentrations. In more concentrated solutions a deviation from the equation is observed.
The molar conductivity of these solutions decreases with t he increase in concen trations at constant temperature.
The values of the ionization constants and the conductivity at infin ite
dilution for each temperature have been calcu lated.
In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show More