Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreThis study was set out to investigate factors affecting labor productivity on construction in the north of Iraq (Kurdistan) and to rank all the factors based on engineers, contractors, and designer’s opinions. 76 factors were analyzed based on previous literature and a pilot study. Next, by using online Google Form, a questionnaire form was created and sent to people who have experience in the construction industry. Afterward, the questionnaire form was sent to targeted people by email and social media apps. Factors were divided into nine groups “Management, Technical and Technology, Human and Workforce, Leadership, Motivation, Safety, Time, Material and Equipment, and External”. However, 202 respondents participated in this study,
... Show MoreThis paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreThe aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.
Developing and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep
... Show MoreThe present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was stu
... Show MoreIn this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreThe aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show More