Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreThe study examines the root causes of delays that the project manager is unable to resolve or how the decision-maker can identify the best opportunities to get over these obstacles by considering the project constraints defined as the project triangle (cost, time, and quality) in post-disaster reconstruction projects to review the real challenges to overcome these obstacles. The methodology relied on the exploratory description and qualitative data examined. 43 valid questionnaires were distributed to qualified experienced engineers. A list of 49 factors causes was collected from previous international and local studies. A Relative Important Index (RII) is adapted to determine the level of importance of each sub-criterion in the fou
... Show MoreThe successive international changes in the economic, political, cultural and other fields resulted in many phenomena that occupied different levels of interest, and have been followed up, studied and analysed by specialists and researchers especially under the development of the media in the global communication.
Even though these phenomena had reflections in the communication domain like development and changes in the mechanism of behaviours between the international communities, they created in the meantime a phenomenon that caused an imbalance in the production, spread and the use of the informations that were supposed to be for fewer than 5 countries whereas it actually it is for more than 180 countries.
In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tang
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
"1998 onwards, a span reporting 1000s of studies depicts the ever-increasing Schiff bases and their complexes applicability; this study genetically tests the research of the last 20 years. The variety of these molecules structural has made them obtainable for a so broad ambit for implementations of biological. They are eminent and because of this unique feature they find their position in the quantitative and qualitative calculation of metals in the aqueous medium. It demonstrated to be prominent catalysts and showed an enjoyable effect of fluorescence. Definitively, Schiff base fissures gotten situation of a unique during bio-experiments and in vitro to develop drugs with a large number of biological structures containing parasites
... Show MoreThis research aims to:
1 – Make a proposed module for (aesthetics) for the second stage - Department of Art Education under education theories.
2 - Verification from the effect of the proposed module on student achievement and motivation towards learning aesthetics material.
To verification the second goal we wording these two hypotheses:
1- There are no individual differences with statistically significant at level (0.05) between the student's scores average. (Experimental group ) who studied according to the proposed module and the average student's scores (control group) who studied in the usual way for the achievement test for the Aesthetics material.
2- There are no individual differences with statistically signifi
A survey and revised checklist of the species belonging to the family of Compositae for the specimens which are collected and deposited previously at the herbarium of the Iraq Natural History Research Center and Museum, in addition to the current specimens collected for the period 2016-2021. A total of 85 species belonging to 49 genera and 16 tribes are revised with their synonyms, locality, and distributions, flowering and fruiting period.
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show More