Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan
... Show MoreThis paper presents seven modified Adomian Decomposition Method (ADM) techniques for efficiently solving initial value problems, especially those involving non-homogeneous and nonlinear differential equations. While the classical ADM is effective for linear homogeneous cases, it has difficulties solving more complex problems. The proposed modifications—from MADM1 to MLADM—include Maclaurin and Taylor expansions, Laplace transforms, and single-step iterations.• These modifications enhance convergence, reduce complexity, and improve accuracy.• Each method offers specific advantages, such as accelerating convergence (MADM2, RADM4), simplifying computation (TSADM5), and achieving higher accuracy (MLADM).• Numerical examples confirm th
... Show MoreThis study aimed at identity baying the difficulties which face public basic school
principals in jar ash governorate in editing formal letters and correspondence and means of
debating with these problems to collect data the researchers developed a question air were
established the population of the study which represents its sample consisted of 129 principals
65 males and 64 females
The results of the study revealed that the principals face difficulties in office and file
management in preparing plans and reports and writing formal letters and answering them
saved recommendations were presented among which were organizing training sessions and
workshops to train the principals on how to dead with there problems.<
Environmental pollution is regarded as a major problem, and traditional strategies such as chemical or physical remediation are not sufficient to overcome the problems of pollution. Petroleum-contaminated soil results in ecological problems, representing a danger to human health. Bioremediation has received remarkable attention, and it is a procedure that uses a biological agent to remove toxic waste from contaminated soil. This approach is easy to handle, inexpensive, and environmentally friendly; its results are highly satisfactory. Bioremediation is a biodegradation process in which the organic contaminants are completely mineralized to inorganic compounds, carbon dioxide, and water. This review discusses the bioremediation of petroleum-
... Show MoreThis paper deals with an analytical study of the flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to exhibit these effects.
Abstract
The current research aims to identify the level of E-learning among middle school students, the level of academic passion among middle school students, and the correlation between e-learning and academic passion among middle school students. In order to achieve the objectives of the research, the researcher developed two questionnaires to measure the variables of the study (e-learning and study passion) among students, these two tools were applied to the research sample, which was (380) male and female students in the first and second intermediate classes. The research concluded that there is a relationship between e-learning and academic passion among students.
Research Summary
First: the problem of research and its importance
The teacher's success in facilitating the students' learning and growth according to the educational and educational goals set out, he must identify the problems of discipline of students in the classroom in terms of sources and reasons and types and methods of prevention and treatment and the teacher to remember that success in his teaching and instruction is not completed more fully once he has the information And knowledge of the subject of the lesson, but must understand the dynamics of the group (class group) and master the skills of classroom management, su
... Show MoreOne of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreThis research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show More