Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Jean-Paul Sartre and Badr Shakir al-Sayyabe are among the most prominent writers that critiqued the destructive role of capitalism and the patriarchal power system in the period of the Post-World War II crisis. Divided into three chapters, the present study examines two of the most eminent literary works in the history of the Western and Eastern societies in the fifties of the last decade: Jean Paul Sartre’s play : The Respectful Prostitute and Badr Shaker al-Sayyabe’s poem: The Blind Prostitute.
Chapter one discusses the position of the prostitute in a patriarchal societies. Chapter two linguistically analy
... Show MoreAbstract
This paper tackles the theme of alienation as being a concurrent state of human being from birth to death; so extensive is the description of this state by writers. Alienation has been a product of their hard experiences and miserable lives. One such writer is Jean-Marie Gustave le Clézio who was so perfect in describing alienation in his works. Upon so many occasions, he imagined one or more of his characters as living in a chaotic world and so lived safely in alienation. The novel "Le Procès-Verbal" is one of the most important of his works. This paper deals with e the narrative structure of novel while shedding light on the hero's alienation: its essence and causes.
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreThis research deals with the frameworks and mechanisms of international press coverage of the issue of foreign interference in the formation of the Iraqi government in the Saudi newspapers Asharq Al-Awsat and Kayhan Al-Arabi Iran and how this topic was addressed in the two newspapers. The frameworks for international press coverage of external interference in the formation of the Iraqi government. ”This research is one of the descriptive research that adopted the survey method، which made it possible to use the content analysis tool to analyze
the content of the two newspapers، whose numbers are (624) from the
newspapers (Al-Sharq Al-Awsat Al-Saudi Arabia and Kayhan Al-Arabi Iran) from (1/1/2018 to 31/12/2018)، and the researc
The current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreThe present study is an attempt to throw light on the nature of the US policy regarding the Middle East region as portrayed by AI-Sabah, Al-Mashriq and Tariq Al-Shaab papers over a period of three months from 1st of July to 30th of September 2013.
In writing this study, a number of goals have been set by the researcher. These goals may include but in no way limited to the nature of the US image as carried by the above three papers, the nature of the topics tackled by them and the nature of the Arab countries which received more and extensive coverage than others.
A qualitative research approach is proposed for the study. This approach has allowed the researcher to arrive at definite answers for the possible questions rais
... Show More