Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
Background: Implant stability is a mandatory factor for dental implant (DI) osseointegration and long-term success. The aim of this study was to evaluate the effect of implant length, diameter, and recipient jaw on the pre- and post-functional loading stability. Materials and methods: This study included 17 healthy patients with an age range of 24-61 years. Twenty-two DI were inserted into healed extraction sockets to replace missing tooth/ teeth in premolar and molar regions in upper and lower jaws. Implant stability was measured for each implant and was recorded as implant stability quotient (ISQ) immediately (ISQ0), and at 8 (ISQ8) and 12 (ISQ12) weeks postoperatively, as well as post-functional loading (ISQPFL). The pattern of implant
... Show MoreThe study aimed to recognize the impact of polygamy on academic achievement and self-confidence among Sattam bin Abdul Aziz University students. To achieve this goal, the researchers used the Descriptive Analytical method using The Self Confidence measurement ,that has been prepared for the purposes of this study, consists set of 29 questions, then applied to the students sample that emerges from polygamy and one- wife families, study sample consists of randomly selected 230 students registered for the year .1435-1436
The results of the study showed presence of medium statistical impact on the significance level (a 4 0.05), this proof significant statistical effect of polygamy on self-confidence among the sample of Prince Sat-tam Univ
Nutrient agar medium with various concentrations of cefotaxime was used for isolation spontaneous mutants from wild type strain of P.aeruginosa PHA-1. Eighty-two mutants were successfully isolated with the viable count 52×107 , these mutants were confirmed as spontaneous not physiological adaption mutants by reculture on the same medium. Then, wild type PHA-1 and mutants were examined for production pyocyanin; a blue greenish pigment was clearly noticed on King A medium. Remarkably the mutant strain named S300-8 was distinguished in productivity in comparison with wild type strain PHA-1; the amount of pigment was 56.0667mg/l and 74.53mg/l respectively. In addition, pyocyanin produced by mutant strain S300-8 revealed a potent efficacy again
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreThe accurate extracting, studying, and analyzing of drainage basin morphometric aspects is important for the accurate determination of environmental factors that formed them, such as climate, tectonic activity, region lithology, and land covering vegetation.
This work was divided into three stages; the 1st stage was delineation of the Al-Abiadh basin borders using a new approach that depends on three-dimensional modeling of the studied region and a drainage network pattern extraction using (Shuttle Radar Topographic Mission) data, the 2nd was the classification of the Al-Abiadh basin streams according to their shape and widenings, and the 3rd was ex
... Show MoreThe research aims to measure the efficiency of health services Quality in the province of Karbala, using the Data Envelopment analysis Models in ( 2006). According to these models the degree of efficiency ranging between zero and unity. We estimate Scale efficiency for two types of orientation direction, which are input and output oriented direction.
The results showed, according Input-oriented efficiency that the levels of Scale efficiency on average is ( 0.975), in the province of Karbala. While the index of Output-oriented efficiency on average is (o.946).
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreAbstract
Purpose: The research attempts to Stand on the reality of the effective application of of strategic information systems in telecommunications companies in the Kurdistan Region, and what is the amount of the impact of such systems on promoting of Strategic Intelligence.
Design/Methodology/Approach: The Applied method has been used, In order to achieve the objectives of the research has been the development of a questionnaire prepared for this purpose and then distributed to (11) Company of Iraqi communications operating in Kurdistan Region companies, it has been used questionnaire to collect data in order to develop
... Show More