Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
ABSTRACT
This research aim to measure the critical success factors for total quality management applications, in order to know the key and important role played by these factors at applying the total quality management through a comparative study conducted in a number of a private colleges.
The research problem posed a set of questions, the most important ones are: Are the colleges (sample of research) aware of the critical success factors at applying the total quality management? What is the availability of the critical success factors at the work of the colleges (sample of research)?
What are the critical success factors in the work of the researc
... Show MoreIn this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation f
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
In a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou
... Show More60 patients diagnosed as having urticaria were included in the study ; 30 patients were effected with acute urticaria and 30 patients were affected with chronic urticaria. In addition, 30 healthy adult volunteers were selected as control group .The patients and control groups sera were examined with enzyme linked immunosorbent assay ( ELISA) to detect total level IgE and radial immunodiffusion (RID) to detect levels of IgG , IgA and IgM . The total level of IgE in acute urticaria ( 1.45±0.13) IU/mL and chronic urticaria (2.12 ± 0.10) IU/mL patients were significantly higher than the control groups ( 0.85 ± 0.10)IU/mL (p<0.05). The level of IgG in acute urticaria ( 12.5± 0.42) g/L and chronic (13.16±0.40) g/L patients , IgA in acute (2.
... Show MoreColorectal cancer (CRC), the second most fatal cancer and the 3rd most common cancer is expected to cause 0.9 million deaths globally in 2025. Carcinoembryonic antigen (CEA) is currently used in the follow-up of patients with colorectal cancer, and in this study, we are trying to find a better marker than CEA in following up on patients' health and knowing the effectiveness of the treatment used and as a diagnostic marker for colorectal cancer. To determine the significance of Cancer antigen 72-4 (CA72-4) as a prognosis predictor in patients with colorectal cancer, compare its prognostic validity to the CEA biomarker. this case-control study includes (150) participants, 100 patients (59 males and 41 females), and 50 healthy controls
... Show More