Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
The official spokesperson considered responsible for the transmission of information and communication messages that convey the government’s view on the various political and economic issues that affect the public opinion towards the performance achieved by the various governmental institutions and for the purpose of communicating with the media in a positive and effective manner, a number of institutions in the world in general and in Iraq in particular have nominated a spokesman to coordinate the efforts and the dissemination of news and the preparation of press conferences to contribute to the achievement of a positive and effective level between the government and the media, so this study has tackled to deal with the credibility of
... Show MoreEconomics / University of Mosul
Abstract
The spread of the phenomenon of excessive buying in our society, especially for cosmetics, and at the same time increase the marketing deception by the organizations to take quick profit 'and accordingly was identified the problem of research in several questions, including:
Is there a significant effect of consumption culture on marketing deception? &n
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreThree N-(hydroxylphenyl) dimethylmaleimides were directly prepared in good yields (81-86)% from the reaction of dimethylmaleic anhydride with amino phenols. The prepared imides were esterified to the corresponding benzoates, methacrylates and cinnamates via their reaction with different acid chlorides in the presence of triethylamine. The prepared esters were tested as plasticizers for PVC via preparing of thirty six samples of PVC with the prepared esters in certain weight ratio followed by recording their softening points. Comparison the results with the universal plasticizers for PVC (DOP) and (DBP) indicated that the prepared esters in general have high plasticizing efficiency.
Metoclopramide (MCP) ion selective electrodes based on metoclopramide-phosphotungstic acid (MCP-PT) ion pair complex in PVC matrix membrane were constructed. The plasticizers used were tri-butyl phosphate (TBP), di-octyl phenyl phosphonate (DOPP), di-butyl phthalate (DBPH), di-octyl phthalate (DOP), di-butyl phosphate (DBP), bis 2-ethyl hexyl phosphate (BEHP). The sensors based on TBP, DOPP, DBPH and DOP display a fast, stable and linear response with slopes 59.9, 57.7, 57.4, 55.3 mV/decade respectively at pH ranged 2-6. The linear concentration range between 1.0×10-5 – 1.0×10-2 M with detection limit 3.0×10-6 and 4.0×10-6 M for electrodes using TBP, DOPP and DBPH while e
... Show MoreThe study aims at identifying the sources of information and explaining their role in e-learning from the viewpoint of the Iraqi college students. The researchers relied on the descriptive method of the survey method to collect data and know the point of view of undergraduate students from the Department of Information in the College of Arts / Tikrit University and the Department of Quranic Studies at the College of Arts / University of Baghdad. The questionnaire was used as an instrument of the study, the research sample is (120) students; each section has (60) male and female students. The study concluded that there are many types and forms of information sources that students receive through electronic educational platforms from text con
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show More