Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
The study aims at investigating the effectiveness of the Virtual Library Technology, in developing the achievement of the English Language Skills in the Center of Development and Continuous Education, in comparison with the individual learning via personal computer to investigate the students' attitude towards the use of both approaches. The population of the study includes the participants in the English Language course arranged in the Center. The sample includes 60 students who were randomly chosen from the whole population (participants in English Courses for the year 2009-2010). The sample is randomly chosen and divided into two experimental groups. The first group has learned through classroom technology; while the other group has l
... Show MoreThe aim of this study to survey the leaf miner Phytomyza Fallen of Iraq, many leaf plants which infested by leaf miners were collected from several regions of Iraq. The paper showed there are four species of this genus during the work: Phytomyza horticola Gourear,1840; Ph. atricornis Meigen, 1838; Ph. rufipes Meigen,1830; Ph. ranunculi (Schrank,1803)
The measurement of natural radioactivity in a given region or country is essential to provide a reference base-line map to follow up a possible variation in future. In order to perform such measurement, the natural radioactivity was measured in different locations. The locations (50 sites) were distributed over Al-Jabal Al-Gharbi Mountain, starting from the city Al-Azeeziah in the eastern part to Wazen on the Tunisian border in the west. The measurements showed obvious variation from one site to another. The levels were fluctuating from (12.8 counts/minute) in Bir-Ayad to (45.7 counts/minute) in Gherian.
In order to investigate the cause for such variation, samples were collected from (27) sites for detailed study. The levels of natur
In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreThe Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene
... Show More