This work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool rotational speed are the most significant parameters on the output responses. The predicted optimal values for the surface roughness, average wall thickness, and wall angle deviation are found to be 0.6363 μm, 0.9442 mm, and 0.0994° respectively. The results have been validated by the confirmation of the experiments and found to be 0.57, 0.9162, and 0.124, respectively, which are within the range of these values.
Background: Arterial stiffness is related with atherosclerosis and cardiovascular disease events. Patients with atherosclerotic disease show to have larger diameters, reduced arterial compliance and lower flow velocities. Aim of study : To compare between patients of two age groups with concomitant diseases diabetes and hypertension in regard to intima media thickness and blood flow characteristics in order to estimate the blood perfusion to the brain via the common and internal carotid arteries. Subject and Methods : 40 patients with (diabetic and hypertension) diseases were enrolled , they were classified according to age. Color Doppler and B mode ultrasound was used to determine lumen Diameter (D), Intima – media thickness (IMT)
... Show MoreThis experiment examined the effects of adding sodium alginate and Kojic acid as substitutes for conventional antibiotics to Skim milk extender on the characteristics of cryopreserved and frozen buffalo bull semen, as well as the evaluation of their additions as antibiotics that help lower the microbial load. Following the collection and dilution of the Skim milk extender, the experimental treatments were separated into five groups, as follows: T1: (control-) without adding any antibiotics; T2: (control+) adding the conventional antibiotics Gentamicin 0.4 IU and Tylosin 0.08 IU per 100 ml; T3: adding Kojic acid at (0.06 g/L) T4: adding sodium alginate at (0.6 mg/mL)T5: adding a combin
Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show MorePure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
In this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.