Abstract
The toughening of epoxy resins with the addition of organic or inorganic compounds is of great interest nowadays, considering their large scale of applications. In the present work, composites of epoxy are synthesized with kaolin particles having different particle sizes as reinforcement. Composites of epoxy with varying concentration (0 to 40 weight %) of kaolin was prepared by using hand lay method. The variation of mechanical properties such as modulus of elasticity, yield, tensile, and compressive strength with filler content was evaluated. The composite showed improved modulus of elasticity and compressive properties on addition of filler. In contrast, the tensile and yield strength of the composite
... Show MoreBackground: This study report the corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy samples without coating and with hydroxyapatite, partial stabilized zirconia and mixture of partial stabilized zirconia and hydroxyapatite coating and comparison between them through electrochemical polarization tests in 37 0 C Hank's solution. Materials and methods: Electrophoretic deposition technique (EPD) was used to achieve the coating from each one of three types of the coating materials (HAP, PSZ and mixture of 50% HAP and 50%PSZ) on Cp Ti and Ti-6Al-4V alloy samples. The electrochemical corrosion test was performed when samples were exposed to Hank's solution prepared in the laboratory and the polarization potential, corrosion rate
... Show MoreThe aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show MoreThis paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreConstruction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
In this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the 〖(CH_3)〗_3 COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the strength coupling increases as the N749-TiO2 heterogeneous in solar cell. However, the efficiency is more sens
... Show MoreSpray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO
... Show MoreAbstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreThis paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
The increasing requirement and use of dental implant treatments has rendered dental implantology indispensable in dentistry. The aim of this study is to determine the optimum concentration of calcium silicate to be incorporated into a polyetherketoneketone (PEKK) matrix used as an implant material to enhance the bioactivity and mechanical properties of the composite compared with unmodified PEKK. In this study, different weight percentage (wt%) of micro-calcium silicate (m-CS) is incorporated into PEKK with ethanol as a binder. Subsequently, the mixture is dried in a forced convection oven at 120°C and poured into customized molds to fabricate a bioactive composite via compression molding (310°C, 15 MPa, and 20 min holding time
... Show More