Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the improved algorithm can detect this type of anomaly. Thus, our approach is effective in finding abnormalities.
The current study aims to compare between the assessments of the Rush model’s parameters to the missing and completed data in various ways of processing the missing data. To achieve the aim of the present study, the researcher followed the following steps: preparing Philip Carter test for the spatial capacity which consists of (20) items on a group of (250) sixth scientific stage students in the directorates of Baghdad Education at Al–Rusafa (1st, 2nd and 3rd) for the academic year (2018-2019). Then, the researcher relied on a single-parameter model to analyze the data. The researcher used Bilog-mg3 model to check the hypotheses, data and match them with the model. In addition
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreIdentification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show MoreThe rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co
... Show MoreObjective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questio
Abstract That the child is aged 7 years, surrounded by information, knowledge and skillsvaried, which constitute the raw material of experience teaching and is in the rule of inputlearning, if received by the student of these data are positive, these data require research and audit, the style becomes more positive, effective, and then becomes the explorer, butnot done exploration efficiency without the visual, auditory and sensory owned by thechildren. So study aimed to identify the values of the optical track and explore mathematical and find the relationship between them. And use the descriptive approach in a manner the linkon the children of the first year of primary school age (6-7) years in my school Waziriya and Karkh, during the peri
... Show MoreColorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A t
... Show MoreThis study examines the factors that affect oral participation of six Arab postgraduate students (two Iraqis, two Jordanians, and two Libyans), namely, three male participants and three female participants. For this purpose, a semi-structured interview was employed. The results showed that female as well male interviewees share some factors that make oral participation in classroom disheartening. These factors include high levels of anxiety, lack of confidence, shyness, and lack of preparation. It was also that there is no difference between male and female interviewees in relation to the factors that make them feel disheartened from oral classroom participation.