Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the improved algorithm can detect this type of anomaly. Thus, our approach is effective in finding abnormalities.
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show Moreيعتقد البعض ان مفهوم العلم يعني الآلات والاجهزة العلمية (تقنيات التعليم) وهي لا تختلف عن مفهوم تكنولوجيا المعلومات , ويعد هذا الاعتقاد خاطئ , لان العلم هو بناء المعرفة العلمية المنظمة والتي يتم التوصل اليها عن طريق البحث العلمي , اما تكنولوجيا المعلومات فهي "التطبيقات العملية للمعرفة العلمية في مختلف المجالات ذات الفائدة المباشرة بحياة الانسان, او هي النواحي التطبيقية للعلم وما يرتبط بها من آلات واجهزة".
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study