The study was aimed at inhibiting the protease produced by Pseudomonas aeruginosa using an 80% alcoholic extract of Conocarpus lancifolius leaves. A total of 146 isolates of P. aeruginosa that were isolated and identified by microscopic and biochemical tests were 51 isolates submitted to primary and secondary screening techniques in order to choose the qualified P. aeruginosa isolate for protease synthesis. Among these isolates, forty-seven isolates showed hydrolysis zones on skim milk media (primary screening); six isolates were chosen for secondary screening. The result revealed that P. aeruginosa P51 had the highest ability to produce the enzyme, with a specific activity of 15.9 U/
... Show MoreFullerene nanotube was synthesized in this research by pyrolysis of plastic waste Polypropylene (PP) at 1000 ° C for two hours in a closed reactor made from stainless steel using molybdenum oxide (MoO3) as a catalyst and nitrogen gas. The resultant carbon was purified and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of C60 nanotubes were observed with the Field emission scanning electron microscopy (FESEM). The carbon is evenly spread and has the highest concentration from SEM-EDX characterization. The result of XRD and FESEM shows that C60 nanotubes are present in Nano figures, synthesized at 1000 ° C and with pyrolysis tempera
... Show MoreKeratin is a fibrous, insoluble structural protein that is highly cross-linked with hydrophobic, hydrogen, and disulfide bonds. Keratinases are enzymes that belong to the category of serine hydrolases that are capable of breaking down keratin. The results of the determination of the better fermentation system showed that the production of keratinase from local A.terreus A13 isolate by submerged fermentation (SmF) system was the best system to give the highest specific activity (113.4 U/mg) of keratinase compared with solid-state fermentation (SSF). The optimum conditions for keratinase production by SmF, were determined via cultivation conditions, including carbon source, nitrogen source, temperature, pH of the medium,
... Show MoreIn this research, production of ethanol from waste potatoes fermentation was studied using Saccharmyses cerevisiae. Potato Flour was prepared from potato tubers after cooking and drying at 85°C. Homogenous slurry of potato flour was prepared in water at solid liquid ratio 1:10. Liquefaction of potato flour slurry with α-amylase at 80°C for 40 min followed by saccharification with glucoamylase at 65°C for 2 hr .Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in production of 33 g/l ethanol.
The parameters studied were; temperature, time of fermentation and pH. It was found that Saccharification process is affected by enzyme Amylo 300 conc
... Show MoreThree Saccharomyces cerevisiae isolates from different sources (China, Turkey and Egypt) were screened by culturing on solid state fermentation to select the most efficient isolate for invertase production. S. cerevisiae from China was high specific activity 34.7 U/mg. The optimum conditions for enzyme production from this isolate were determined by using a medium composed of wheat bran moisten with 1:0.5 (v:w) corn steep liquor as nitrogen source at initial pH 5.0 for 5 days at 30OC.