Exploitation of mature oil fields around the world has forced researchers to develop new ways to optimize reservoir performance from such reservoirs. To achieve that, drilling horizontal wells is an effective method. The effectiveness of this kind of wells is to increase oil withdrawal. The objective of this study is to optimize the location, design, and completion of a new horizontal well as an oil producer to improve oil recovery in a real field located in Iraq. “A” is an oil and gas condensate field located in the Northeast of Iraq. From field production history, it is realized the difficulty to control gas and water production in this kind of complex carbonate reservoir with vertical producer wells. In this study, a horizontal well design with multi-stage completion is studied and proposed to find optimal oil recovery in the southeast region of the selected field. A bulk oil well sector model is used to simulate the fluid flow of a single-porosity/single-permeability model. Then, a sensitivity analysis has been run to optimize; the well trajectory path, different scenarios on well oil and water production potential, and well completion design. The result of the well sector simulation indicates that the well trajectory with an Azimuth of 89 degrees and with a multi-stage completion design has better production performance under water production constraints. Optimum oil production rates of 1000 to 2000 STB/day, as delaying and controlling early gas and water production challenges is achieved.
It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
Petrel is regards one of the most important software to delineate subsurface Petrophysical properties to the reservoir. In this study, 3D Integrated geological models has been built by using Petrel software. The process includes integrated Petrophysical properties and environmental approaches.
Noor oil field within Mishrif Formation in terms of structural geology represents asymmetrical anticlinal fold with direction NW-SE. Porosity and water saturation model have been built. The reservoir was divided into several reservoirs and Nonreservoir units depends on the Petrophysical properties for each zone. In addition,
intact model for the reservoir in terms of porosity and water saturation have been b
This study aims to set up a 3D static model to characterize and evaluate Mishrif Formation which represents the main reservoir in Buzurgan Oilfield, southern Iraq. Six wells have been selected to set up structural, facies and petrophysical models of Mishrif reservoir by using Petrel Software. The structural model has been built based on the structural contour map of the top of Mishrif Formation, which derived from seismic interpretation, and by using different static algorithms in Petrel Software. The structural model showed that the Buzurgan Oilfield represents an anticlinal fold with two domes north and south separated by a depression. The petrophysical model included the porosity model and water saturation model. Th
... Show MoreBuzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).
The ESP results showed the durability of ESP regarding th
... Show MoreRadiological assessment due to existing of natural occurring radioactive materials
(NORM) in South Rumaila oil field was achieved in this study. Different samples
including soil, sludge, scale, oil, and water were collected from different stages of
oil and gas production in Markazia Degassing Station (SDS) in South Rumaila oil
field. Radioactivity of Ra-226, Th-232 and K-40 were measured using gamma
spectrometry system based on HPGe detector with efficiency of 30%. The results
show that some locations within SDS are contaminated with NORM. The activity of
Ra-226, Th-232 and K-40 range between 18.4 to 312.8, 9.4 to 140.8 and 66.4 to
800.8 (Bq/kg) respectively. The places to be more contaminated among the other
p
In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo
... Show MoreReservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti
... Show MoreNowadays, after the technological development in societies, cloud computing has become one of the most important technologies. It provides users with software, hardware, and platform as remote services over the Internet. The increasing number of cloud users has caused a critical problem in how the clients receive cloud services when the cloud is in a state of instability, as it cannot provide required services and, thus, a delay occurs. Therefore, an algorithm was proposed to provide high efficiency and stability to work, because all existing tasks must operate without delay. The proposed system is an enhancement shortest job first algorithm (ESJF) using a time slice, which works by taking a task in the shortest time first and then the l
... Show MoreHistory matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo
... Show MoreNew designs of solar using ray tracing program, have been presented for improved the performance and the out put power of the silicon solar cell, as well as reducing the cost of system working by solar energy. Two dimensional solar concentrator (Fresnel lenses) and three dimensional concentrators (parabola dish and cassegrain) were used as concentrator for photovoltaic applications (CPV). The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.