Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of various methodologies in the field was created. Unlike previous studies that focused on picture splicing or copy-move detection, this study intends to investigate the universal type-independent strategies required to identify image tampering. The work provided analyses and evaluates several universal techniques based on resampling, compression, and inconsistency-based detection. Journals and datasets are two examples of resources beneficial to the academic community. Finally, a future reinforcement learning model is proposed.
A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show Morethe study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreCrime is one of the most severe challenges facing States, and strives to find preventive measures, reduce its seriousness, and prevent them; due to developments, crimes have increased, and emerging new patterns of crimes, there is an urgent need to prevent crimes and reduce their effects. Modernizing its punitive system and diverting it to correctional rehabilitative justice to redress the prejudice caused by the crime and rehabilitate the convicted person by using alternative measures to short-term imprisonment. This research emphasizes alternative sanctions' value to minimizing short-term imprisonment penalties and their impact on societal security through several goals like, the negative consequences, justifications, and alternatives
... Show MoreIraq is one of the most important countries in the world that has received its share of terrorist acts by the terrorist organization the Islamic State of Iraq and al-Sham (ISIS), which has caused instability, especially during the period of ISIS's control of seven Iraqi provinces (2014-2017). This stage has caused a decline in the levels of human and economic development and its inconsistency with the capabilities and needs of the Iraqi population. Therefore, this study aims to investigate the hypothesis that there is a close relationship between the decline in development in Iraq and the brutal practices of ISIS that it committed during his period of control over many Iraqi cities and regions. This study used several method
... Show More