Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of various methodologies in the field was created. Unlike previous studies that focused on picture splicing or copy-move detection, this study intends to investigate the universal type-independent strategies required to identify image tampering. The work provided analyses and evaluates several universal techniques based on resampling, compression, and inconsistency-based detection. Journals and datasets are two examples of resources beneficial to the academic community. Finally, a future reinforcement learning model is proposed.
"1998 onwards, a span reporting 1000s of studies depicts the ever-increasing Schiff bases and their complexes applicability; this study genetically tests the research of the last 20 years. The variety of these molecules structural has made them obtainable for a so broad ambit for implementations of biological. They are eminent and because of this unique feature they find their position in the quantitative and qualitative calculation of metals in the aqueous medium. It demonstrated to be prominent catalysts and showed an enjoyable effect of fluorescence. Definitively, Schiff base fissures gotten situation of a unique during bio-experiments and in vitro to develop drugs with a large number of biological structures containing parasites
... Show MoreThe current research studies the digital techniques in order to identify the treatments with graphic techniques for the theatrical scene, which includes a number of programs and treatment tools with digital technique to identify the visual and aesthetic dimensions and outputs achieved in the design of the theatrical scene in addition to the options, that they provide in the design of a system of hypotheses for the theatrical world, In order to be an experimental mediator in achieving the creative hypothesis, which limited the research with a pivotal objective which is: identifying the digital techniques employed in the graphic digital design for the scene in the theatrical show. The research lies in its objective limits stated in the met
... Show MoreAccess to high-quality neurosurgery online learning is limited in low- and middle-income countries, and Iraq is part of this category. The need for collaboration and connection of people worldwide to exchange ideas and experiences in neurosurgery is a challenge. Surgical Neurology International® (SNI)/SNI Digital stimulated the establishment of the joint effort to bring the discussion about the best experiences in neurosurgery from the United States and Iraq together in an internet meeting format.
An online survey was formulated and distributed to the attendees of the SNI-Baghdad neurosurgery
The corona virus epidemic outbreak has urged an extreme worldwide effort for re‐purposing obtainable approved medications for its treatment. In this review, we're focusing on the chemicals properties andpharmacologicaleffectiveness of medicationsofsmallmolecule that are presently being evaluated in clinical trials for the management of corona virus (COVID‐19). The current review sheds light on a number of drugs that have been diagnosed to treat COVID‐19 and their biological effects.
The objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b
... Show MoreThe techniques of contemporary Iraqi painting and their reflection on the productions of students of art education is an important subject in the field of painting at the theoretical and practical levels in academic study, whether theoretical or practical. Al-Iraqi is one of the arts with historical roots and a distinguished position among other artistic genres. Painting has received a sufficient level of development through the use of various contemporary techniques to advance it for the better.
The methodological framework included the problem of research and the need for it, and then the importance of research came in shedding light on the techniques of contemporary Iraqi painting, and the impact of these techniques on the producti
Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreAqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.