Soil is the cardinal resource for agricultural crops. Healthy soil will produce healthy plants. Since healthy soil is the important goal for the farmers, they need to select the best tillage system to achieve that goal. There are two main types of tillage systems. Conservation tillage (no-tillage farming) uses agricultural machinery that performs a double function; tillage and seed farming simultaneously. In contrast, conventional tillage farming uses multiple agricultural machines to till and seed the soil. The farmers in the northern governorates of Iraq have used the conservation farming system for a long time. However, the farmers who live in the middle and southern governorates in Iraq use conventional tillage farming. Because most of the farmers in Iraq use the conventional tillage farming method instead of conservation tillage farming to prepare the soil, this paper will briefly explain the advantages and disadvantages for each method. This article might help Iraqi farmers to select one of these two approaches, with the goals of increasing crop yield, saving energy, conserving water, reducing total cost of farming, and guarding the environment against air pollution.
A Raman spectroscopy method was optimised to examine the chemical changes of aspirin tablets after interaction with helium temperatures. Several aspirin tablets were exposed to plasma-assisted desorption ionisation flame for different times (10, 30, 50, 60, 180 and 300s) and then analysed by Raman spectroscopy using optimal conditions. The changes in chemistry between exposed and fresh (without exposure to plasma) tablets were compared. The vibrational peaks of the aspirin molecule in the Raman spectrum were identified by checking the peak position. The results showed clear spectra with increases in intensity of vibrational peaks until 30s, whereas no spectra were measured for the exposed tablets to plasma flame after 50s. It can, the
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a
... Show MoreFourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show MoreThe present study aims to establish an empirical correlation between biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) of the sewage flowing in Al-Diwaniyah wastewater treatment plant. The strength of the wastewater entering the plant varied from medium to high. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. Regression equations for BOD5 and COD removal percentages were suggested which can be used to evaluate rapid effluent assessment after the treatment processes or optimal process control to improve the performance of wastewater treatment plants.
... Show MoreAn experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm) , was tested under climate condition of Baghdad city with a (43° tilt angel) by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width), which was manufactured from iron painted with a black matt.
The experimental test deals with five types of absorber:-
Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber .
The hourly and average efficiency of the collectors
... Show More—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t
... Show MoreThis paper reports a comprehensive study on the behavior of concavely curved soffit reinforced concrete (RC) beams strengthened in flexure with carbon fiber-reinforced polymer (CFRP) composites under static loading. The main objective of this paper is to explore the effect of surface concavity on the bond performance of externally bonded wet layup CFRP sheets and laminates. An experimental program consisting of flexural strengthening of 24 RC beams with concavely curved soffits was carried out. All specimens were simply supported RC beams tested under three-point bending. Of the 24 beams, 6 beams were flat soffit RC beams, and the remainder were fabricated with concavely curved soffits with a degree of curvature that is ranging from 5 mm/m
... Show More