Preferred Language
Articles
/
7RajaIgBVTCNdQwCbHYK
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this aspect of the Deepfake detection task and proposes pre-processing steps to improve accuracy and close the gap between training and validation results with simple operations. Additionally, it differed from others by dealing with the positions of the face in various directions within the image, distinguishing the concerned face in an image containing multiple faces, and segmentation the face using facial landmarks points. All these were done using face detection, face box attributes, facial landmarks, and key points from the MediaPipe tool with the pre-trained model (DenseNet121). Lastly, the proposed model was evaluated using Deepfake Detection Challenge datasets, and after training for a few epochs, it achieved an accuracy of 97% in detecting the Deepfake

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Opcion
Analysis of Computer Textbook for the Second Intermediate Grade According to Digital Citizenship
...Show More Authors

The research aims to build a list of digital citizenship axes and standards and indicators emanating from them, which should be included in the content of the computer textbook scheduled for second grade intermediate students in Iraq, and the analysis of the above mentioned book according to the same list using the descriptive analytical method ((method of content analysis)). The research community and its sample consisted of the content of the computer textbook scheduled for the second year intermediate students for the academic year 2018-2019, and the research tool was built in its initial form after reference to a set of specialized literature and previous studies that dealt with topics related to digital citizenship, and the authenticit

... Show More
Preview PDF
Publication Date
Sat Sep 27 2025
Journal Name
International Journal Of Engineering & Technology
An integrated multi layers approach for detecting unknown malware behaviours
...Show More Authors

Malware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (14)
Scopus Crossref
Publication Date
Wed Sep 29 2021
Journal Name
Biomass Conversion And Biorefinery
Encapsulated deep eutectic solvent for esterification of free fatty acid
...Show More Authors

A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio

... Show More
Scopus (16)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Design and Implementation for optical fiber communication system using frequency shift coding
...Show More Authors

In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
An Enhanced Document Source Identification System for Printer Forensic Applications based on the Boosted Quantum KNN Classifier
...Show More Authors

Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
A Comparative Analysis of the Zernike Moments for Single Object Retrieval
...Show More Authors

Zernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study
...Show More Authors

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Role of Digital Economy in Iraqi Economic Growth for The Period of 2010-2022 (Analytical Study)
...Show More Authors

The research addresses the role of the digital economy in the growth of the Iraqi economy during the period from 2010 to 2022. The research is based on the hypothesis that the digital economy has become one of the primary growth drivers worldwide and has a close relationship with economic development. Therefore, the digital transformation in Iraq can accelerate bridging developmental gaps with other countries.

It has become evident that the Iraqi economy suffers from structural imbalances for various reasons, hindering economic growth. These reasons include political and economic factors, as well as the absence of a well-thought-out policy to promote the agricultural sector, which is considered one of the fundamental sectors capa

... Show More
View Publication Preview PDF
Crossref